International Journal of Non—Linear Mechanics 88 (2017) 1-10

Contents lists available at ScienceDirect

International Journal of Non—Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

On the physics of viscoplastic fluid flow in non-circular tubes

@ CrossMark

Mario F. Letelier®, Dennis A. Siginer®””, Cristian Barrera Hinojosa®

2 Centro de Investigacién en Creatividad y Educacién Superior & Departmento de Ingenieria Mechdanica, Universidad de Santiago de Chile, Santiago, Chile
b Department of Mathematics and Statistical Sciences & Department of Mechanical, Energy and Industrial Engineering, Bostwana International University
of Science and Technology, Palapye, Bostwana

ARTICLE INFO ABSTRACT

Keywords: Flow of Bingham plastics through straight, long tubes is studied by means of a versatile analytical method that
Viscoplastic allows extending the study to a large range of tube geometries. The equation of motion is solved for general non-
Bingham circular cross-sections obtained via a continuous and one-to-one mapping called the shape factor method. In

Hershey-Bulkley
Non-circular tube
Plug and stagnant zones

particular the velocity field and associated plug and stagnant zones in tubes with equilateral triangular and
square cross-section are explored. Shear stress normal to equal velocity lines, energy dissipation distribution
and rate of flow are determined. Shear-thinning and shear-thickening effects on the flow, which cannot be
accounted for with the Bingham model, are investigated using the Hershey-Bulkley constitutive formulation an
extension of the Bingham model. The existence and the extent of undeformed regions in the flow field in a tube
with equilateral triangular cross-section are predicted in the presence of shear-thinning and shear-thickening as
a specific example. The mathematical flexibility of the analytical method allows the formulation of general
results related to viscoplastic fluid flow with implications related to the design and optimization of physical
systems for viscoplastic material transport and processing.

1. Introduction

Knowledge of the flow of viscoplastic materials is relevant in many
contexts such as flow of paints, pastes, suspensions in complex
geometries with industrial applications, coating and mining, foodstuffs
processing, cosmetic, and pharmaceutical and construction industries,
ceramics extrusion, blood and other biological fluid flows, semi-solid
materials and in some natural flows such as mud, lava displacements
and debris flow. In all these applications as well as natural phenomena
the rate of flow, the velocity distribution and the energy dissipation are
important flow variables to determine. One model of viscoplastic fluid
widely used is Bingham model for its capacity of predicting useful
results in most areas of interest. The Bingham model becomes non-
linear for flow configurations different from parallel axisymmetric or
unbounded parallel surfaces and, moreover, requires careful interpre-
tation and analysis of mathematical results, which are meaningful only
when all physically relevant conditions between stress and rate of
deformation are met. Other types of non- Newtonian bounded flows,
such as viscoelastic fluid flows in tubes, may be fully described
physically over the whole flow region by means of mathematical or
numerical results derived from the constitutive and linear momentum
balance equations. But this is not the case for viscoplastic flows
described by the Bingham model since it predicts physically mean-

ingless results in some zones that must be identified and characterized
as plug zones and stagnant zones where there is no deformation. This is
not explicitly predicted by the Bingham model, and must be deduced
from conditions associated with the yield stress, tube contour and the
related physical considerations. Understanding the dynamics of the
formation of dead regions for instance is important to the design of
extrusion geometries. It is quite difficult to model viscoplastic fluid flow
and design operating systems in most real-life contexts. In particular
the determination of the location and shape of the boundary separating
the yielded and unyielded masses of the fluid must be part of the
solution of the initial boundary value problem.

Several authors have addressed in the past the analysis of the flow
of Bingham fluids in conduits and related geometries. The ground-
breaking work of Russian researchers in the sixties set the tone for the
research direction for decades to come. Safronchik [1-3] and Mosolov
and Mjasnikov [4—-6] conducted fundamental investigations on the
propagation and the location of the yield surface and its properties and
the plug and dead regions in the flow, respectively. The channel flow of
a Bingham plastic with a given initial velocity distribution and a time
dependent pressure gradient is investigated in [1] to determine the
subsequent velocity field and the location of the yield surface. A highly
complicated equation for the velocity dependent on the location of the
interface between the plug zone and the flowing mass of the fluid is
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derived, and a non-linear integral equation for the position of the
interface is presented. The unsteady motion of a Bingham fluid both in
bounded and unbounded domains is investigated in [2], specifically the
unsteady flow field generated by a rotating cylinder and the flow field in
a Couette device, respectively. A non-linear integral equation to
determine the location of the yield surface is derived but left unsolved.
The unsteady flow of a Bingham fluid in a circular tube is examined in
[3] and again an unsolved complicated equation is presented to
determine the location of the yield surface. These equations can be
solved albeit with considerable difficulty; however whether or not their
predictions lead to the correct physical solution, the speed of propaga-
tion and position of the yield surface, is an open issue as can be seen
from the discussion in the papers of Huilgol [7,8]. For instance the
attempt by Huilgol [7] to solve the non-linear integral equation derived
by Safronchik [1] to determine the speed and location of the yield
surface in the Rayleigh problem for a Bingham fluid led to the non-
existence of a solution. Huilgol states that the reasons behind this non-
physical result are the importance of the homogeneous and non-
homogeneous boundary conditions imposed on the velocity field at
the yield surface, and points out that a qualitative understanding of the
existence or non-existence of moving yield surfaces in any flow of yield
stress fluids requires a deeper insight into the right conditions to be
imposed at the interface. Conditions for the existence of the plug zones
were investigated by Huilgol [8] who showed in particular the
singularity of the yield surface across which the velocity, the accelera-
tion and the velocity gradient as well as the shear stress, its time
derivative and its gradient are all continuous, but the time derivative of
the acceleration, the spatial gradient of the acceleration, the second
gradient of the velocity and the corresponding temporal and spatial
gradients of second order of the shear stress all undergo jumps.

The pioneering work of Safronchik [1-3] and the work of Huilgol
[7,8] shows how difficult it is to determine the location and speed of
propagation of a yield surface even in simple geometries. The complex-
ity of the behavior of the yield surface was further brought to light by
Glowinski [9] who showed that the yield surface may move laterally
with a finite speed in the pressure gradient driven flow of a Bingham
fluid, the rigid core in the center gradually becoming larger, the yield
surface expanding with a finite speed of propagation, decelerating the
fluid and eventually choking off the flow and bringing it to rest.
Specifically he proved that the flow of a Bingham fluid in a pipe of
arbitrary cross-section comes to a halt in a finite amount of time if the
pressure gradient drops suddenly below a critical value needed to
overcome the effect of the yield stress in contrast to the behavior of a
Newtonian fluid which comes to rest in an infinite amount of time
when the pressure gradient is removed suddenly.

Sekimoto [10,11] made important contributions in the early nine-
ties to the determination of the propagation speed and the location of
the yield surface. He finds in [10] a similarity solution and derives an
equation for the location of the yield surface in the case of an existing
steady simple shear flow in the semi-infinite region over a flat plate
which becomes unsteady due to a sudden reduction in the shear stress
on the boundary to a value below the yield stress of the Bingham fluid.
He shows that the yield surface propagates from the flat plate boundary
into the fluid and derives an evolution equation for the location of the
yield surface at subsequent times; however he does not solve the
equation either. The lateral movement of a yield surface in a shearing
flow is considered in [11]. He correctly assumes that the lateral motion
of the yield surface obeys the diffusion equation,
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and asserts that the gradient of the shear stress z,, is continuous across
the yield surface provided certain continuity conditions are met the
continuity of the local acceleration among them. He presents an
evolution equation for the location of the yield surface; however it is
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not solved and no examples are given.

The existence and uniqueness of the plug region was shown by
Mosolov and Mjasnikov [4] using variational methods. In particular
they show exactly and analytically that the flow stops if the Bingham
number Bi exceeds a critical Bingham number Biczﬁ=l.0603178
with no-slip conditions on the walls when the cross-section is a square.
This result, that there is a limiting Bingham number for a given cross-
sectional tube, was extended later to general cross-sectional tubes by
Duvaut and Lions [12], and much later was confirmed through
extensive numerical computations by Saramito and Roquet [13] for a
square cross-section with no-slip conditions as well as with slip on the
walls Roquet and Saramito [14]. In the latter case Bi. depends on a
dimensionless slip parameter S that quantifies the extent of slip. For S
=0.6 the critical Bingham number is determined to be
Biczﬁ=0.5301589. When S =+ fluid sticks to the wall and no-slip
condition prevails. The existence of dead regions with a concavity
always turned towards the inside of the cross-section was proven
analytically by Mosolov and Mjasnikov [5]. This is clearly a very
difficult proposition to show numerically as a general statement as is
obvious from the numerical results presented by Saramito and Roquet
[13] and Roquet and Saramito [14].

The first numerical study of yield stress fluids was done by Fortin
[15]. The augmented Lagrangian method framework introduced by
Fortin and Glowinski [16] and further developed by Glowinski and
LeTallec [17] was used by Huilgol and Panizza [18] to study the flow in
an annulus and an L-shaped cross-sectional tube. The flow of a
Bingham fluid in a square duct, and in particular the geometry of the
plug zones as well as the dead zones at the duct corners was explored
numerically by Saramito and Roquet [13] and Roquet and Saramito
[14]. In the earlier paper [13] the fully developed Poiseuille flow of a
yield stress fluid in a square cross-section was studied with no-slip
condition at the walls using the augmented Lagrangian method frame-
work coupled to a mixed anisotropic auto-adaptive finite element
method. In the later paper [14] the Poiseuille flow of a yield stress
fluid in a square cross-section with slip yield boundary condition was
considered numerically using the same approach introduced by the
authors previously. The consideration of slip is important as it
frequently occurs in the flow of two-phase systems such as suspensions,
emulsions and in industrial viscoplastic flow problems such as concrete
pumping, and it appears to be more pronounced when the material has
a yield stress property such as bio-solids and pastes. Steady flow of
Bingham fluids in narrow eccentric annuli was investigated both
analytically and numerically by Walton and Bittleston [19], and
conditions for the existence of plug zones and quasi plug zones were
discussed in the context of the flow of pastes and suspensions in
complex geometries with industrial applications. Wachs [20] also
studied the problem for a wide range of the relevant parameters using
numerical methods. The present authors [21,22] studied viscoplastic
flows in a variety of non-circular tubes both analytically and numeri-
cally relating geometric and flow variables to predict velocity distribu-
tion, rate of flow, and energy dissipation. Recent work that contributes
insights into the physics of the flow of viscoplastic fluids and the
complexities associated with it, as constitutively characterized by the
Bingham model, addresses thermal effects, Akram et al. [23] and Turan
et al. [24], and the Lattice Boltzmann method applications in complex
geometries, Tang et al. [25]. A major difficulty with the flow of a
Bingham fluid in complex geometries is the existence of spatial
discontinuities in kinematic and dynamic variables at the interface
between regions undergoing deformation and the plug and stagnant (or
dead) zones.

To the best knowledge of the present authors, no published
analytical work exists shedding light onto the general behavior of flows
of Bingham fluids in non-circular tubes of arbitrary cross-section. The
kinematics and dynamics of the steady, developed and isothermal flow
of Bingham fluids in longitudinally constant, non-circular cross-
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