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A B S T R A C T

In this paper, modified von Kármán equations are derived for Kirchhoff nanoplates with surface tension and
surface tension-induced residual stresses. The simplified Gurtin-Murdoch model which does not contain non-
strain displacement gradients in surface stress-strain relations is adopted, so that the von Kármán strain-
compatibility equation can be expressed in terms of the stress function and deflection. The modified von
Kármán equations derived here are different than the existing related models especially for elastic plates with
in-plane movable edges. Unlike the existing models which predict a surface tension-induced tensile pre-stress
for an elastic plate with in-plane movable edges, the present model predicts that this tensile pre-stress is actually
cancelled by the surface tension-induced residual compressive stress. Our this result is consistent with recent
clarification on similar issue for cantilever beams with surface tension, which implies that the existing models
have incorrectly predicted an invalid tensile pre-stress for an elastic plate with in-plane movable edges which
leads to significant overestimation of postbuckling load and free vibration frequencies. In addition, our
numerical examples indicated that surface stresses can moderately increase or decrease postbuckling load and
free vibration frequency of Kirchhoff nanoplate with all in-plane movable edges, depending on the surface
elasticity parameters and the geometrical dimensions of nanoplates.

1. Introduction

Over the last decades, beam- and plate-like elastic nanostructures
have been widely used in MEMS/NEMS [1–5]. Owing to the large ratio
of surface to volume, the effects of surface tension and surface elasticity
on the mechanical behavior of such elastic nanostructures have
attracted considerable attention. As experimental and atomistic simu-
lation methods for nanoscale materials are complex, expensive and
time-consuming, effective theoretical methods, such as continuum
elastic models, have been widely used to investigate the mechanical
behavior of elastic nanostructures. In an effort to study surface
elasticity of small-scale elastic materials, Gurtin and Murdoch (GM)
[6,7] developed a theoretical framework of surface elasticity in the
1970s, and the related surface elasticity parameters were estimated,
among others, by Miller and Shenoy [8] using atomistic simulation. In
the past decade, the linearized GMmodel has been widely used to study
the influence of surface elasticity on static bending, compressed
buckling and vibration of nanobeams, nanofilms or nanoplates [9–14].

The GM model treats the initial surface stress σ0, called “surface
tension”, as a finite value, while the surface tension σ0-induced residual

stress is treated as infinitesimal. Consequently, the original form of the
GM model has two features: 1) the surface stresses depend not only on
surface strains but also on some displacement gradients which cannot
be expressed in terms of surface strains; 2) the surface tension σ0
appears as a coefficient in the linear equation of motion/equilibrium
while the σ0-induced residual stress is absent, which predicts an
unbalanced tensile pre-stress for thin nanobeams and nanoplates.
Consequently, for instance, for one-dimensional cantilever nanobeams,
the original form of GMmodel could have given a non-zero tensile axial
stress caused by σ0. Actually, Gurtin et al. [15] have correctly stated
that the σ0-induced compressive residual stress must be treated as a
finite value and added to eliminate the tensile axial force caused by σ0,
and then there will be no an unbalanced axial force in a cantilever
beam. Park and Klein [16] and Yun and Park [17] investigated surface
stress effects on vibration and bending behavior of metal nanowires
using the surface Cauchy-Born model. Their results indicated that
whether a non-zero axial force exists depends on the end conditions.
Song et al. [18] used a continuum model to analyze mechanical
behaviors of nanowires with surface tension and surface tension-
induced residual stresses. By comparing surface Cauchy-Born model
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and generalized Young–Laplace model with experimental data, Song
et al. [18] concluded that surface tension-induced residual stress is
essential for correctly predicting overall mechanical behavior of
cantilever nanobeams/nanowires.

Recently, some modified versions of GM model have been proposed
by some authors [19–21] to address the above-mentioned issues. In
the present paper, a strain-consistent model proposed in Ru [22] is
employed to study large deflection behavior of nanoplates with surface
tension and surface tension-induced residual stresses. In particular,
modified Von Kármán equations are derived for the Kirchhoff nano-
plates with surface tension and surface tension-induced residual
stresses, and the derived equations are used to study the large
deflection mechanical behaviors of plate-like nanostructures.

2. An elastic nanoplate with surface tension and surface
elasticity

An elastic isotropic plate of uniform thickness h is considered here.
Rectangular Cartesian coordinates (x, y, z) are introduced where the
xy-plane coincides with the geometric mid-plane of the plate and the z-
coordinate taken positive downward. According to Kirchhoff's hypoth-
esis, the displacement field can be represented by
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where u, v and w denote the displacements of a material point at (x, y,
0) on the mid-plane caused by applied mechanical loadings, and u* and
v* are the in-plane residual displacements induced by the initial surface
stress σ0.

For the plate with surface tension σ0 and σ0-induced residual
stresses, the nonlinear strains of von Kármán type are given by
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where ε ε γ( * , * , *)xx xx xy are the in-plane residual strains induced by surface
tension σ0, and
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are the in-plane strains of the mid-plane, called “membrane strains”.
The membrane strains satisfy St. Venant's compatibility condition
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Based on Hooke's law, the constitutive equations of the bulk plate
can be written as
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where E and ν are the elastic modulus and Poisson's ratio of the bulk
plate, respectively.

For surface constitutive relations, the surface strain energy adopted

in Ru [22] is
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where ε ε γ( , , and )xx
s

xx
s

xy
s are surface strains given by (2) with z= ± h/2,

λ λ σ μ μ σ= + and = −s s0 0 0 0 and λ μands s are two surface elastic con-
stants. Just as for the GM model, the displacements between surface
and bulk material are continuous and the surface strains are equal to
the values of bulk strains on the surface. It is verified that the surface
stresses can be expressed as [22]
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As we known, surface stresses in the original GM model depend on
surface strains and some gradients of in-plane displacements (u, v),
and they cannot be expressed in terms of surface strains and the
deflection w. The present model, as a simplified GM model, makes the
surface stresses in Eq. (7) depend on surface strains and the deflection
w only, independent of any non-strain gradients of in-plane displace-
ments (u, v). It is this feature that makes it possible to express the von
Kármán compatibility Eq. (4) in terms of the stress function φ and
deflection w (see Eq. (17)).

Thus, the resultant mid-plane membrane forces are given by
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where c is the perimeter of the cross-section, h is the plate thickness,
N N N* , *, and *xx yy xy are the residual mid-plane membrane forces caused
by surface tension-induced residual stresses, defined by
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Thus the membrane forces (8) are given in terms of the in-plane
membrane strains (3) and the deflection w. So the in-plane membrane
strains given by the simplified GM model can be written in term of in-
plane membrane forces as
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In addition, the total resultant moments can be expressed as
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