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A B S T R A C T

The dynamic behaviour of a cantilever beam of an unnegligible large mass and with a concentrated mass fixed at
its end, which impacts on a movable base according to Hertz's damp law, is studied. A new finite element
reference model of the system and its lower-dimensional substitutive models with one degree or two degrees of
freedom are developed. The qualitative-type as well as quantitative-type applicability limits of these substitutive
models are discussed - the latter ones are described in terms of the corresponding spectra of Lyapunov
exponents.

1. Introduction

Vibrations of mechanical systems with impacts have been exten-
sively studied starting from pioneering works by Goldsmith [1], Feigin
[2], Peterka [3] and Fillippov [4]. The reason of this interest lies in the
fact that such motions are a typical feature of various engineering
applications (e.g., see Ref. [5] and the references therein). Due to a
strongly nonlinear nature of the collision process, vibro-impact systems
can exhibit very diverse dynamic behaviours like chaotic motion,
intermittency, Devil's attractors, a Feigenbaum scenario and different
types of grazing bifurcations (e.g., [6–14]).

In most of the investigations carried out so far either physical
models with a finite number of degrees of freedom, composed of rigid
and heavy masses connected by a massless spring, or physical models
of continuous elastic systems, that is, systems with a considerable,
unnegligible mass of elastic elements, have been employed. These
systems have been intensively studied both in the case of rigid (e.g.,
[9,10,16–24]) as well as soft amplitude constraints (e.g., [12,13,17–
21,24–41]), and the researchers' attention has been mostly focused on
periodic solution stability, bifurcations and singularities in vibro-
impact dynamics. A finite-dimensional nonlinear model of a cantilever
beam with a tip mass that is impacted by a shaker was developed and
thoroughly studied by Balachandran [42], Long et al. [43] and Dick
et al. [44]. In Ref. [15], continuous elastic systems that have rigid
concentrated masses impacting against an unmovable non-deformable
base have been investigated, a way to determine substitutive models
with one degree and two degrees of freedom against a finite element
model has been proposed and qualitative-type applicability limits of

these substitutive models have been discussed.
In this paper, we deal with a cantilever beam with an unnegligible

large mass whose one end is harmonically kinetically forced, whereas a
concentrated mass is located on its second end (in contrast to [15]) and
it can impact against a moving damped Hertz-type base (for Hertz's
damp contact model, see, e.g., [13,32,33]). The main objective is to
develop a new discrete model of this system with impacts and examine
the applicability limits of the model with one degree or two degrees of
freedom as a substitutive system for such a reference model. To attain
this, the substitutive systems have been proposed, the spectra of
Lyapunov exponents have been determined for the systems under
consideration, a certain numerical characteristics of dynamic beha-
viours of the system related to energy dissipation caused by impacts
has been defined with the spectrum of Lyapunov exponents (see
Section 3) and the values of these characteristics determined for the
corresponding systems have been compared. The approach applied has
allowed for finding not only qualitative-type applicability limits of the
substitutive systems as in Ref. [15], but more restrictive applicability
limits of the quantitative type as well. The coefficient proposed by us
can be the basis for an introduction of global – for the given range of
the control parameter - measures of distances between dynamic
behaviours of various systems. To do it, it is enough to count the
distances of the corresponding diagrams of this coefficient for various
systems applying standard distance measures for real functions, for
instance the Kolmogorov distance or the distance in space ℓ

p for p ≥ 1.
In Section 2, a physical model shown in Fig. 1 with the finite

element method, hereafter referred to as the FEM model (Fig. 2a), and
models of systems with one degree or two degrees of freedom (here-
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after referred to as the 1DOF model (Fig. 2b) or the 2DOF model
(Fig. 2c)) are developed. Various dynamic characteristics (bifurcation
diagrams of displacement, maximal Lyapunov exponents and the
coefficient of dynamic behaviours based on the spectrum of
Lyapunov exponents) determined for the FEM model are compared
to the respective characteristics for the substitutive systems, that is, for
the 1DOF model and the 2DOF model in Section 3. On the basis of
these comparisons, a conclusion can be drawn that substitutive models
with a low number of degrees of freedom can be applied to model and
analyse the motion of elastic beams of a considerable mass and having
an additional concentrated mass that impacts against a moving base.

2. Discrete models of the system

Consider a simple cantilever beam system depicted in Fig. 1, which
comprises a concentrated mass Mc and two leaf springs of a length l, a
mass mb and a bending stiffness EI, connecting this concentrated mass
with the base subject to kinematic excitation of an amplitude a and a
frequency η. The boundary conditions prevent rotation of the mass Mc.

2.1. FEM model

Fig. 2a depicts a mathematical model of the system under inves-
tigation, generated with the finite element method. It was found in
some simple numerical experiments that four finite elements were
enough to model vibrations of the cantilever beam: the values of the
first three resonance frequencies of this model (without a concentrated
mass) in the experiment corresponded to the results of analytical
calculations with accuracy up to three significant digits. The mass Mc

located at one end of the beam has a fender with which it can impact on
the moving base. If the system is in the static equilibrium position, the
bottom part of the mass Mc (fender) is situated at a distance d from the
base.

The matrix equation of the system motion can be written in the

following form:

M x T x K x F F a ηt[ ]{ }̈ + [ ]{ }̇ + [ ]{ } + { } = { } sin( ).d (1)

The stiffness matrix [K] takes the form:
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Its components are the stiffness matrices k[ ]rs r s
1
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in which E denotes the Young modulus, I is a moment of inertia of the
beam cross-section, and le stands for individual finite element lengths.

The inertia matrix takes the form:
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This matrix consists of the inertia matrices m[ ]rs r s
1
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with me standing for individual finite element masses.
In the investigations discussed here, damping was restricted to

external damping. This means that the damping matrix is proportional
to the inertia matrix (see, e.g., [45]):

T υ M[ ] = [ ]. (6)

Here υ denotes a coefficient of external damping.
The structure of vectors of displacements and forces is as follows:
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An impact of the mass Mc on the base was modelled with Hertz's
law (see, e.g., [13,33]):

Fig. 1. Cantilever beam with impacts under consideration.

Fig. 2. Equivalent models of the cantilever beam; FEM model (a), 1DOF model (b);
2DOF model (c).
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