
Contents lists available at ScienceDirect

International Journal of Non–Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

Impinging rotational stagnation-point flows

Patrick Weidman

Department of Mechanical Engineering, University of Colorado Boulder, CO 80309-0427, USA

A B S T R A C T

A rotational stagnation-point flow of fluid density ρ1 and kinematic viscosity ν1 impinges normal to another
rotational stagnation-point flow of fluid density ρ2 and viscosity ν2. Results are compared with a previous study
on the normal impingement of two Homann stagnation-point flows for which the flow in the far field is
irrotational.

1. Introduction

Axisymmetric stagnation-point flow on a flat surface was first
considered by Homann [1]. Many variations on that problem have
been studied including the effects of wall stretching, and suction and
blowing through a porous wall; see the review by Wang [2]. An
axisymmetric stagnation-point flow was discovered by Agrawal [3].
In contrast to the irrotational outer flow of Homann [1], this flow is
rotational in the far field. Agrawal [3] derived his solution using
spherical coordinates. The nature of the flow becomes most apparent
when cylindrical coordinates (r, z) with coordinate velocities (u, w) are
used which furnish the pleasingly simple solution

u r z a r z w r z a z( , ) = , ( , ) = − 2 (1.1)

in which the parameter a having units LT( )−1 measures the strength of
the stagnation flow. Clearly the impermeable and no-slip conditions are
satisfied at the surface z=0.

The present study is the fourth in a series of papers devoted to
extensions of this seldom studied stagnation-point flow. Weidman [4]
considered Agrawal stagnation-point flow impinging normal to a
rotating plate, analogous to the problem studied by Hannah [5] who
considered the same situation but with Homann stagnation-point flow.
In a sequel Weidman [6] studied Agrawal stagnation-point flow
impinging normal to a radially stretching plate; this represents a
variation of the Homann stagnation-point flow impinging normal to
a radially stretching plate studied by Mahapatra and Gupta [7]. In a
third paper on this subject, Weidman [8] investigated Agrawal stagna-
tion-point flow impinging normal to a flat quiescent liquid surface.

It should be mentioned that other rotational stagnation-point flows
exist. The rotational aspect in the far field is obtained by superposition
of a sideways shear flow onto a normal stagnation-point flow. For two-
dimensional rotational stagnation-point flows see the one-fluid studies
of Stuart [9], Tamada [10] and Dorrepaal [11] and the two-fluid study

of Tilley and Weidman [12]. For an axisymmetric rotational stagna-
tion-point flow along the surface of a cylinder, see Okamoto [13] and
Weidman and Putkaradze [14,15].

In the present study we consider Agrawal stagnation-point flow of
one fluid impinging normal to an Agrawal stagnation-point flow of
another fluid. This is analogous to the problem of normally impinging
Homann stagnation-point flows studied by Wang [16]. All the above
studies represent exact solutions of the Navier–Stokes equation in the
manner defined in Drazin and Riley [17]. While the Homann [1] flow is
irrotational in the far field the Agrawal [3] flow is not. It should be here
noted that Davey [18] studied the rotational flow near a forward
stagnation point, but his analysis is restricted to the boundary-layer
approximation and does not represent an exact solution of the Navier–
Stokes equations.

The presentation is as follows. The exact similarity reduction of the
Navier–Stokes equation is given in Section 2 along with introductory
figures showing the region of acceptable solutions. Further results of
numerical calculations are given in Section 3 and the paper terminates
with a discussion and concluding remarks in Section 4.

2. Problem formulation

The swirl-free axisymmetric problem is formulated using cylindrical
coordinates (r,z) with corresponding velocities (u,w). Following Wang
[16], we denote velocities in the upper-half plane by u r z( , )1 1 , w z( )1 1 with
z1 pointing upward and velocities in the lower-half plane by u r z( , )2 2 ,
w z( )2 2 with z2 pointing downward, for which the horizontal interface
between the stagnation-point flows lies at z z= = 01 2 . A sketch of the
system is presented in Fig. 1. A solution form that gives rise to
axisymmetric rotational Argawal stagnation-point in the far field above
the interface, and satisfies the equation of continuity for incompres-
sible flow, is known to be of the form [4,6,8]
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where a prime denotes differentiation with respect to η. Inserting this
ansatz into the Navier–Stokes equations furnishes the boundary-value
problem for η ≥ 0 as

F FF F F F α F‴ + 2 ″ − ′2 = 0, (0) = 0, ′(0) = , ″(∞) = 2 (2.2)

where α is a dimensionless parameter measuring the local interfacial
velocity which may be chosen at will.

For the lower fluid the same similarity solution form applies, viz.
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where now a prime denotes differentiation with respect to ζ. Insertion
into the Navier–Stokes equations for the lower region ζ ≥ 0 furnishes
the boundary-value problem

G GG G G G β G‴ + 2 ″ − ′2 = 0, (0) = 0, ′(0) = , ″(∞) = 2 (2.4)

where β is a dimensionless parameter measuring the local interfacial
velocity. For fixed α > 0 one finds β by matching dimensional radial
velocities at the interface.

Integrating the z-component of the Navier–Stokes equation in the
upper layer gives the pressure field

p η p a ρ ν F η F η α( ) = − 2 ( ( ) + ′( ) − )1 0 1
2/3

1 1
4/3 2 (2.5a)

and doing the same for the lower layer, matching to the upper layer
pressure at the interface, gives

p ζ p a ρ ν β G ζ G ζ β( ) = − 2 ( ( ) + ′( ) − )2 0 2
2/3

2 2
4/3 2 (2.5b)

in which p0 is the stagnation pressure. Since there is no radial variation
of the pressure, there is no deflection of the free surface as in the
problem studied by Wang [16]. Wang's results depend on the flat
interface criterion
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where δ is the deflection of the free surface, A is the strain rate of the

Homann stagnation flow with units (T−1), and g is gravity.
In the sequel the upper layer fluid parameters ρ1 and ν1 are

considered known as is the strength a1 of the upper rotational
stagnation-point flow. The matching conditions at the interface require
equal radial shear stresses and velocities. Matching stresses at the
interface
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furnishes the relation
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Matching the velocities gives
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Consider first the case of an immobile interface α β= = 0 for which
(2.8) is satisfied identically. Then the solutions for F η( ) and G ζ( ) are
each that of Agrawal stagnation-point flow, viz.

F η η G ζ ζ( ) = , ( ) =2 2 (2.9)

for which F G″(0) = ″(0) = 2 and hence from (2.7b)
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Since all ratios on the left are positive, an immobile interface is not
possible. In fact, from (2.7b) it is clear that one must have χ < 0 and we
choose to satisfy this by orchestrating F″(0) to be negative. As shown in
Weidman [8], F″(0) first becomes negative when α α= = 1.773040 ; in
that problem for Agrawal stagnation-point flow impinging on a
quiescent liquid surface, solutions are available for α α< 0 only. Here,
however, we need α α> 0 and a plot of F″(0) up to α = 3.0 is shown in
Fig. 2; the value F″(0) = 2 at α = 0 is the Agrawal stress and the dot
corresponds to zero upper liquid interfacial stress at α α= 0.

An inequality exists for the radial stresses to match at the interface.
For our choice F″(0) < 0 one must have α α> 0 and then for G″(0) > 0
one must have β α0 < < 0. Thus
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from which one finds the necessary inequality
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A plot of the region of solutions σ > 1 is shown in FIg. 3.
In the present study, owing to the fact that the interfacial pressure

Fig. 1. Sketch of the Agrawal stagnation-point flow in the upper layer impinging on an
Agrawal stagnation-point flow in the lower layer showing the coordinate and velocity
system employed.

Fig. 2. Radial interface stress parameter F″(0) for Agrawal stagnation-point flow as a

function of the interface velocity parameter α. The dot at α α= = 1.773040 represents the

point of zero radial shear stress.
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