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In this paper, we propose a parametrically excited pendulum with irrational nonlinearity which comprises a
simple pendulum linked by a linear spring under base excitation. This parametric vibration system exhibits
bistable state and discontinuous characteristics due to the geometry configuration. For small oscillations, this
system can be described by Mathieu equation coupled with SD (Smooth and Discontinuous) oscillator whose
dynamic response is examined analytically by using the averaging method in both smooth and discontinuous
case. Numerical simulations are carried out to demonstrate the complicated dynamic behavior of multiple
periodic motions and different types of chaotic motions.

1. Introduction

It is well known that the parametrically excited pendulum has
received a great deal of attention due to its rich dynamic behavior from
multiple periodic motion to complex chaos, particularly as a typical
example of the parametric vibration system, has been the subject of
study for a considerable amount of time. Over the past half century, the
parametrically excited pendulum has been extensively reported in term
of the analytical study, numerical simulation and experimental ver-
ification. In the 80's, Leven and Koch et al. examined the chaotic
behavior [1] of the parametrically excited pendulum system by means
of numerical solution, and then identified the boundaries of subhar-
monic and homoclinic bifurcations by applying Melnikov and aver-
aging method [2]. In addition, they made an experimental study to
verify the periodic and chaotic motions of the parametrically excited
pendulum system [3,4]. In the 90's, Clifford and Bishop et al. studied
the escape zone [5], classification of rotating periodic orbits [6],
locating oscillatory orbits [7] and inverted dynamics [8] of the
parametrically excited pendulum system. Early this century,
Szrmplinska-Stupnicka employed computer aided methods to examine
the criteria for occurrence of transient tumbling chaos in the para-
metrically driven pendulum [9]. In 2003, Garira. et al extended the
classification of rotating solutions identifying new types together with
previously known ones [10], as purely rotating, oscilating rotating,
straddling rotating and large amplitude rotating. In 2007, Xu and
Wiercigroch obtained the approximate analytical solutions of oscilla-
tory and rotational motions by using first order perturbation method
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[11,12], which has been recently expanded to the higher order terms
and extensively studies by Lenci et al. [13]. Particularly, a new concept
of using mechanical pendulum systems for wave energy extraction has
been given in [14], which is a innovative application of the parame-
trically excited pendulum. Litak et al. proposed a classification of the
complex responses of the parametrically excited pendulum by the
recurrence plots [15] in 2010. In addition, an asymmetrically sup-
ported inverted pendulum with base excitation was proposed in [16],
whose transition curves are numerically and theoretically studied by
means of an asymmetric Mathieu equation.

Recently, a rotating pendulum linked by a linear spring with a fixed
end [17] is presented, whose chaotic boundaries for the smooth case
with a pair of double homoclinic orbits [ 18] and the discontinuous case
with a pair of double heteroclinic-like orbits [19] are obtained by using
semi-analytical method. The aim of this paper is to start exploring this
rotating pendulum excited by a vertical harmonic oscillation, which
differs from the parametrically excited pendulum by the fact that it can
bear strongly irrational nonlinearity of multiple bistable and discontin-
uous characteristics owing to the influence of the coupling of the
pendulum and spring.

The main motivation of this paper is to present a novel parame-
trically excited pendulum with irrational nonlinearity, which exhibits
multiple bistable and discontinuous characteristics due to the geometry
configuration. The other motivation is to reveal the nature of irrational
nonlinearity from small oscillation to large rotation and then to chaotic
motion by using analytical investigation and numerical verification. In
terms of practical application, this pendulum system can be considered
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as an energy collection device for harnessing tidal power [20,21] via the
multiple bistable and rotational motions.

This paper is organized as follows. In Section 2, the equation of
motion for the novel parametrically excited pendulum is derived, which
is a parametric vibration system with irrational nonlinearity. In Section
3, the unperturbed dynamics of this pendulum system with irrational
terms is analyzed directly without using Taylor expansion. In the
following section, Section 4, the dynamic response of small angle
oscillation is explored by means of the averaging method. While in
Section 5, numerical simulations are carried out to demonstrate
multiple periodic motions and different types of chaotic motions.
Finally we summarize the conclusions and provide the further chal-
lenge.

2. Proposed model and the equations

Physical model of the novel parametrically excited pendulum is
shown in Fig. 1, which consists of a rotating pendulum linked by a
linear spring under a base excitation. We first describe this physical
model: a simple pendulum is considered to move in a vertical plane. It
is hanged on a rigid shaft and connected by a linear spring, where both
the rigid shaft and the spring are fixed on a base. The pendulum, linear
spring and the rigid shaft as a whole is subjected to harmonic excitation
in vertical direction provided by the vibration base.

Based upon the cartesian coordinates (X,Y) in Fig. 1, we establish
the dynamic equation of the novel parametrically excited pendulum by
applying Lagrange's equation. The position coordinates of the pendu-
lum ball can be denoted as (X, Y) = (Lsinx, L cosx + P), and then its
velocity v can be obtained by taking the first derivative of its position
coordinates

v= X+ (V) = JUx')? — 2P'Lx sinx + (P')?. 1)

The kinetic energy 7, potential energy V and dissipative energy ¥ of the
novel parametrically excited pendulum system can be written as

T= %mvz = %m((bc’)2 — 2P'Lx’sinx + (P')?), V= —mg (L cosx + P)
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+ —k(JL* 4+ h%* —2Lhcosx — 1), ¥ = =C(Lx')?,
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Substituting L = T — V and ¥ into the following Lagrange's equation
d(oL)_oL o
dilox') ox o 7 3)

the equation of the novel parametrically excited pendulum system can
be derived and written as follows

P-acosQi

Fig. 1. Physical model of the parametrically excited pendulum with irrational non-
linearity.
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mLx" + CLx' + m(g + af2? cos Qf)sinx + kh sinx
l

=0
VL? + h* — 2Lh cosx 4)

where prime denotes derivative with respect to 7. x is the angular
displacement, m is the mass of the pendulum, g is the acceleration due
to gravity, L is the length of the pendulum rod, k and [ are the stiffness
and relax length of the spring, h is the height from A to B, C is the
viscous damping coefficient and a vertical harmonic oscillation is
written as a function of the time 7, P = a cos Qf. It can be written in
a different form if a new non-dimensional time ¢ is introduced as follow

g sinx

X4yt + (1 +pcoswt)siny - ————= =0,
1+ A% —21cosx 5)
where
= “mg+kh[_ _ mL C _ maf?
\] mL 7 \/mg+kh m’ mg + kh’
mL h h kl KA
—Q =—, a=—, kK=—, ¢= .
mg + kh L l mg 1 + ka

From the mathematical perspective, parameters A, a and x can be
regarded as mutually independent and then a combination g is
introduced in system (5). In this case, the corresponding value of g
can be calculated by changing independently the length of the
pendulum and stiffness of the spring. From the physical point of view,
parameter A defines the geometry of the model and g mainly reflects the
stiffness of spring. And most particularly, the classical parametrically
excited pendulum can be obtained directly by changing the parameter k
to 0 in system (4). It is worth pointing out that this pendulum system
exhibits both smooth to discontinuous dynamics depending on the
value of the smoothness parameter A.

3. Unperturbed dynamics

In this section, the unperturbed dynamics are analyzed directly for
the original equation with irrational nonlinearity by using nonlinear
dynamical technique [22] in both smooth and discontinuous cases.

When p=0 and y = 0, the unperturbed system of the novel para-
metrically excited pendulum (5) is described by

g sinx
V14 A2 — 21 cosx (6)

which is smooth for 2 > 1 and discontinuous at x=0 for 4 = 1. It is
worth reiterating here that the discontinuous dynamics is obtained by
changing the parameter A to 1 smoothly, which is the limit case as
A — 1 from the mathematical point of view. Letting i = F(x), the
restoring forces of smooth and discontinuous case can be obtained as
follows

X + sinx — 0,

g sinx
JI+ 22 = 22cosx

. X . .X
—sinx + g cos 551gn(sm 5) A=1.

—sinx + A>1,

F(x) =

@)

Even the stiffness of the spring is linear and the resistance force
supplied to the system is strongly irrational nonlinearity due to
geometry configuration. Letting F (x) = 0, the equilibria of system (6)
can be obtained as follows

(a1, ) =0,0), (23 %3 =(£7,0),

1+ 4242

o
22 (8)

where x5 exist if and only if |1 + 4> — ¢? < 2A. To understand the
influence of parameters A and g in system (6), we construct the

(Xa,5, Wy 5) = (i arccos(
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