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A B S T R A C T

This paper presents a study on the development of high-performance finite elements for geometrically nonlinear
analysis of frame structures with curved members. Based on the geometrically exact beam theory, a highly
efficient and accurate mixed finite element is developed. A new approach is proposed for constructing the
independent internal force field by including major terms satisfying equilibrium conditions in the deformed
configuration. An element-level equilibrium iteration procedure is employed for the condensation of element
internal degrees of freedom during the nonlinear solution. Numerical results are presented to demonstrate the
excellent performance of the element developed, and it is shown that even when each structural member is
modelled with just one element, accurate solutions can still be achieved.

1. Introduction

While much research effort has been devoted to nonlinear analysis
of frame structures over the years, it may still be difficult to accurately
predict nonlinear behaviours of spatial frame structures. This difficulty
is partly due to the fact that a curved geometry of the structural
member may cause significant couplings between extension, bending,
and torsion, and such couplings are complicated to simulate. Thus, it
remains a challenge to develop accurate and efficient geometrically
nonlinear curved beam elements for spatial frame structures.

Considerable progress has been made on geometrically nonlinear
analysis of spatial frame structures in the last several decades. Among
the most important developments, the geometrically exact beam theory
of Reissner [1] and Simo [2] has been widely used. Geometrically exact
beam is a type of nonlinear beam model based on finite rotation theory.
The spatial state of a beam is described by a vector defining the centroid
position of each cross-section, and a rotation tensor defining the
orientation of the cross-section. The effect of transverse shear deforma-
tion can be included because the cross-sections are no longer assumed
normal to the deformed line of centroids. Based on this beam model,
many studies have been carried out, e.g. Simo and Vu-Quoc [3],
Cardona and Geradin [4], Pimenta and Yojo [5], Ibrahimbegović
et al. [6], Ibrahimbegović [7], Ritto-Corrêa and Camotim [8], Zupan
et al. [9], Pai [10], Češarek et al. [11], Gacesa and Jelenic [12], Zhong

et al. [13], Meier et al. [14], Mueller et al. [15], Xiao and Zhong [16],
Zhang and Zhong [17]. Applications of the theory have also been
extended to the analysis of initially curved beams, e.g. Ibrahimbegović
[18], Zupan and Saje [19], Kapania and Li [20], Mata et al. [21], Meier
et al. [22].

Parameterization of the rotation field is an essential issue in the
implementation of geometrically exact beam. As spatial rotations
belong to a nonlinear manifold, improper parameterization of spatial
rotations may make the computation cumbersome and induce inaccu-
racy [13]. There are several alternative parameterization methods
available, including Euler parameters, rotational quaternion, and the
rotation vector [7–9,23]. Among them, the rotation vector method is
regarded as very promising. One of its major advantages is that the
nodal rotation vectors can be additively updated and the curvature can
be computed directly from the rotation vector variation along the beam.
Another advantage is that there is no accumulated error from the
configuration updating with the total values of rotation vector, making
it possible to get solutions insensitive to load increments. Based on the
method proposed by Cardona and Geradin [4], Pimenta and Yojo [5]
derived a symmetric tangent stiffness matrix of conservative system
from linearized weak forms of the equilibrium equation.
Ibrahimbegović [7] and Ibrahimbegović et al. [6] further proposed
the computational method for the singularity problem. Ritto-Corrêa and
Camotim [8] presented explicit expressions for differentiating the
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Rodrigues formula and the spin-rotation vector variation relationship
up to the second directional derivative. Since then, the effective
rotation vector parameterization has been established.

It is well known that, solution accuracy of displacement-based
elements is relatively low, especially for stresses and internal forces. In
order to get more accurate solutions, more elements are usually
required and computational efforts will greatly increase. Another issue
with displacement-based elements is the so-called locking phenomena.
Shear and membrane locking are serious problems associated with
displacement-based beam elements with independent displacement and
rotational fields and/or curved geometry [13,24]. The use of mixed
finite element models is one of the effective approaches to overcome
such numerical problems. Saleeb and Chang [25] showed that the
membrane and shear locking phenomena of relatively thin curved
beams can be eliminated by using mixed finite elements with appro-
priate conditions. Studies on ordinary beam by Neuenhofer and
Filippou [26], Hjelmstad and Taciroglu [27], Sun and Bursi [28],
Tort and Hajjar [29] and Alemdar and White [30] illustrated that mixed
finite elements have advantages on computational accuracy and
efficiency over conventional displacement-based elements. For geome-
trically exact beams, a few studies have been reported, including [31–
34]. Nukala and White [31] developed a geometrically exact mixed
thin-walled beam element ignoring the effect of transverse shear
deformation. Santos et al. [32] developed a two-field hybrid-mixed
beam element based on geometrically exact beam theory and their
numerical examples showed that the mixed finite element did not suffer
from shear locking, but it was limited to linear transversal displacement
fields and hence the effect of bending can’t be accurately considered.
Wackerfuß and Gruttmann [34] gave a specific formulation of the
three-field mixed beam element, however the effect of element spatial
configuration on definition of internal force fields was not included. So
far, no mixed curved beam element has been reported which can
consider the nonlinear effects of finite rotation, transverse shear
deformation and element spatial configuration simultaneously.

In the present study, a mixed curved beam element is developed for
accurate and efficient nonlinear analysis of general frame structures,
with effects of finite rotation, shear deformation, and spatial config-
uration all considered. The element formulation is based on the
geometrically exact beam theory and the Hellinger-Reissner variational
principle. Lagrange interpolation is used for translational displacement
and rotation fields, and beam rotations are expressed with the rotation
vector. A new approach is proposed and employed for constructing the
independent internal force field by considering the equilibrium rela-
tionship at deformed configuration. An element-level equilibrium
iteration procedure is employed for condensing out some of the nodal
unknowns that are treated as internal DOFs of the element.

2. Geometrically exact curved beam theory

2.1. Kinematic description

Geometry of a three-dimensional beam is described by the family of
plane cross-sections and the line of centroids of cross-sections. Each of
the cross-sections is assumed to remain planar and preserve its initial
shape, but is not necessarily normal to the line of centroids at deformed
state. This makes it possible to include the effect of shear deformation.

For the sake of simplicity, only beams curved in a single plane is
considered in this study. In the Cartesian reference system with base
vectors iE ( = 1, 2, 3)i , two configurations are defined for a beam
element initially curved in plane 1–2 (see Fig. 1):

(i) The initial configuration — the curved beam configuration at the
initial state, in which mechanical properties of the beam are
defined and loading conditions are given;

(ii) The current configuration — the beam configuration at a deformed
state.

The geometry of the initial configuration is invariable and described
by the family of position vectors r r rr = [ ]0 01 02 03

T of the line of
centroids and the orthonormal base vectors ie ( = 1, 2, 3)i0 . The current
configuration is described by the family of position vectors

r r rr = [ ]1 2 3
T and the orthonormal base vectors ie ( = 1, 2, 3)i .

Vectors r0, e01, e02, e03, r, e1, e2 and e3 are expressed as functions of S,
which is the arc-length parameter. In Fig. 1, A0 and B0, which are both
in plane 1–2, are the start point and the end point of the initial beam
configuration, respectively; A and B are the start point and the end
point of the current beam configuration. Note that different base
vectors can be related through the following expression

ie Λe ΛΛ E= = ( = 1, 2, 3)i i i0 0 (1)

where Λ is the rotation tensor positioning the initial configuration onto
the current configuration and it can be parameterized by the rotation
vector θ θ θθ = [ ]1 2 3

T, which is a vector aligned with the rotation axis
and having a magnitude equal to the rotated angle θ θ= , given by
Rodrigues formula [8]

θ
θ

θ
θ

Λ I θ I θ I= + sin [ × ] + 1 − cos [ × ]3×3 3×3 2 3×3
2

(2)

where I3×3 is the 3 × 3 identity matrix. And also in Eq. (1), Λ0 is the
rotation tensor positioning the reference basis Ei onto the initial
configuration and is given by

⎡

⎣
⎢⎢⎢

⎤

⎦
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θ θ
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(3)

where θ0 is the angle between basis vectors e01 and E1.
Based on the rotation vector parameterization, the beam configura-

tion can be completely defined by vectors r and θ, which can be
grouped together as generalized displacements,

⎡
⎣⎢

⎤
⎦⎥ϕ r

θ=
(4)

By using values of the generalized displacements, path-independent
and invariant finite element implementation can be achieved. These
advantages make it possible to get solutions insensitive to step sizes in
the incremental/iterative solution procedure.

For the sake of simplicity, a rectangular cross-section with width b
and height h is considered in the following derivation. Introducing a
standard hexahedral element with natural coordinates ξ, η, ζ for the
beam axis direction, cross-sectional height and width directions (see
Fig. 2), we can express the initial and current configurations in the
following form

⎡
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⎤
⎦⎥

ξ η ζ X ξ η ζ X ξ η ζ X ξ η ζ

ξ ξ h η b ζ

X

r Λ E E
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= ( ) + ( )
2

+
2
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where ξΛ ( )0 is given by Eq. (3) with θ ξcos ( )0 and θ ξsin ( )0 expressed as
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with
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The Jacobian matrix for coordinate transformation is
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