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ABSTRACT

Laminar boundary layers generated by power-law plate stretching with cross flows are studied. Only the
stretching solutions of Banks [10] are considered, those being bounded by exponentially stretched plates. In one
case the cross flow is generated by a uniform transverse stream far above the stretching plate or a wall moving
with uniform transverse velocity. Two other cases deal with cross flows generated by transverse shearing
motions of the surface. Possible two parameter solutions appear, but here we present two one-parameter families
of cross flow solutions generated by transverse plate shearing motion. Streamwise and transverse shear stresses
and velocity profiles are displayed in graphical form.

1. Introduction

The study of cross flows began some time after the pioneering
studies by Prandtl [1] and Blasius [2] on the laminar flow over a flat
plate with small viscosity. Indeed, Prandtl [3] is apparently the first to
report the solution for uniform press gradient flow past an infinite
yawed cylinder. Various theoretical developments through the follow-
ing years have been reviewed by Cooke and Hall [4] and a review of
numerical methods for solving generalized three-dimensional boundary
layer flows is given by Eichelbrenner [5].

The basic feature of similarity flows of this type is that the primary
streamwise varying flow is described by a self-contained ordinary
differential equation while the secondary fully-developed corss-flow is
described by a linear ordinary differential equation which has, for its
variable coefficients, terms involving the primary flow solution. This
one-way coupling has been labeled the ‘independence principle’ by
Jones [6].

Relatively recent studies on cross flows include that of Weidman [7]
and Fang and Lee [8]. A very recent study on cross flows induced solely
by transverse plate motions has been reported by Weidman [9].

In the current study we consider flows transverse to the flow
induced by streamwise power-law stretching surfaces studied by
Banks [10]. The cross flows may be generated by a uniform cross flow
stream above the plate or by uniform plate motion. Also, similarity
solutions for cross flows generated by transverse shearing motions of
the surface are available. Here we consider only streamwise stretching
plates. This excludes the set of solutions of Banks for which the plate
moves upstream.

The presentation is as follows. The theoretical problem developed in
Section 2 includes a summary of Banks' power-law stretching plate
similarity fomulation. In Section 3 the cross flows obtained for a
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uniform free stream above the plate or a plate moving transverse at
uniform velocity are presented. Cross flows generated by transverse
shearing motions of the plate are presented in Section 4. A discussion of
results and concluding remarks are given in Section 5. A precise
derivation of the equation for exponential stretching of a plate found
by Banks is given in the Appendix.

2. Theoretical development

The theory is developed following the notation of Banks [10]. We
take Cartesian coordinatews (x, y, z) with associated velocities (u, v, w).
The streamwise flow are directed along the x-direction, y is the plate
normal coordinate and z is the spanwise coordinate in the direction of
the cross flow. All flows considered are of infinite extent in the
spanwise direction, and thus are fully-developed. Hence we look for
solutions with velocity fields independent of the spanwise coordinate z,
so the continuity equation for incompressible flow reduces to
al + Q =0
ox  dy (2.1)

and the constant property boundary layers equations reduce to
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where p is the fluid density and v is its kinematic viscosity. The first
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viscous term in each equation is neglected in the boundary-layer
approximation. Also, since the flows considered have no external
pressure gradient, the plate-normal Eq. (2.2b) is neglected.
Consequently, the leading order boundary-layer description of the
streamwise and cross-flow momentum equations reduce to

du du %u
u— — =v—
ox dy oy? (2.3a)
ow ow 0*w
U— +v— =v——.
ox ay ay? (2.3b)

2.1. Power-law stretching surfaces

The flow induced by power-law stretching of a plate u = ax™ over a
flat plate with leading edge at x=0 is described by the similarity
velocities [10]

\/a(m + l)x(m—l)/Z
2u

u(x, y) = ax"f'(m), n@, y)= y (2.42)
1 -1
V()C, y) = - %x(m—l)ﬁlif(ﬂ) + (m )”Uu(’/)]
v m+ 1 (2.4b)

This gives rise to Banks' equation and impermeable plate boundary
conditions

"+ =p2=0, f(O)=0, fO)=1, [f(0)=0

in which g = 2m/(m + 1). Banks [10] integrated this equations over the
large parameter space —1.9999 < $ < 202. In these solutions Banks has
shown that flows in the range —2 < f < 2 has the plate stretching away
from the origin, whilst for 2 < # < oo the plate shrinks towards the
origin. In this study only stretching plate solutions are considered.
The dimensional form of the longitudinal wall shear stress is given

(2.5)

as
T = a_u = ’demfl)nfr/(o)
Hoy 2
P ly= (2.6)

where y is the absolute viscosity of the fluid.

Solution of these high Reynolds number equations describe the
nature of the flow asymptotically far downstream of the origin (x = 0)
of the streamwise flow. In the following problems we find one-way
coupled ordinary differential equations which are numerically solved
using a shooting technique with the ODEINT code of Press et al. [11].

3. Uniform free stream and transverse plate motion

The cases for uniform free stream cross flow and uniform transverse
plate motion are intimately related. In either case the similarity ansatz
is taken as

w(x,y) =W, g @) (free stream), w(x,y) = W, g () (plate motion)

B.1)

where W, is the free stream cross flow far above the plate with
similarity variable g () and it is the uniform transverse plate motion
with similarity variable g, (). Inserting these forms along with Banks'
velocity ansatz (2.4) into (2.3b) furnishes the coupled boundary-value
problems

gh+fg1 =0, g0)=0, g(o)=1. (3.2a)
and
g2+fg2=0, g0)=1, g(c0)=0. (3.2b)

In both cases the dimensional form of the transverse wall shear stress is
given by
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3.3)

3.1. Special cases for the g (n) solution

Certain aspects of the g (1) flow at g = {1,0, -1} are now con-
sidered. For f# = 1 we note that the streamwise flow is that due to Crane
[12] which has an exact solution for f(5). Inserting this solution into
(3.2) gives the boundary-value problem

g1+l —-eMg1=0, g0 =0, g(o)=1 (3.9
which has solution
e e 1
= e ¢ - —
0= - 1)[ e] (3.5)
giving the cross flow wall shear stress parameter
1
100) = = 0.581977.
81(0) “-1 3.6)

A comparison of the Eq. (3.2a) with the = 0 equation f” + ff" =0
and their boundary conditions shows that

gm=1-f0p)

and numerical calculations verify that the cross flow and streamwise
wall shear stress parameters are given by

g'1(0) = —=f"(0) = 0.627555.

B.7)

(3.8)

As pointed out by Banks [10] the exact solution of (2.5) for g = —1
is

fp=+2 tanh(%).

Inserting this into boundary-value problem (3.2a) and solving gives
n
) = tanh
& ( > ]

from which the cross flow wall shear stress parameter is found to be

3.9

(3.10)

g'1(0) = = 0.707107.

1
2 (3.11)

3.2. Connection between the two solutions

Inspection of the governing equations and boundary-values (3.2a)
and (3.2b) show that the solutions are related as

&m=1-gG), g20) =-g10) (3.12)

so one need only solve the boundary-value problem for g, (1) from which
the results for g, (7) are deduced.

To check the symmetry relation (3.12), solutions of the coupled Egs.
(3.2a,b) and (2.5) were obtained over the parameter range —2 < f < 2.
The resulting streamwise wall shear stress parameter f”(0) and cross
flow wall shear stress parameters g'; (0) and g’,(0) are shown in Fig. 1 as
a function of . Sample streamwise velocity profiles f'(n) at selected
values of 3 are shown in Fig. 2 and corresponding cross flow velocity
profiles g () and g, () are displayed inf Fig. 3.

4. Transverse wall shearing motions

Motivated by the study of Weidman (2016) we seek transverse
shearing motions that might generate a cross flow beneath the
streamwise power-law plate stretching motions. Here we posit the
solution for transverse motions as
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