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A B S T R A C T

We study a hyperelastic model of some biological soft tissues with emphasis on the problem of its matching with
the material parameters acquired by experimental mechanical tests. First, we study the polyconvexity property
of the hyperelastic model. Then, we explore the notion of equivalent sets of material parameters. We perform a
numerical study of the regions of equivalent material parameters characterizing the curves predicted by the
hyperelastic model that are close, within a prefixed tolerance, to those given by the experimental data. In the
numerical study we use the quadratic variation and the Hausdorff distance. The study suggests that a qualitative
knowledge of shape and volume of the regions of equivalent material parameters can provide both a criterion for
the optimal match between the model with the experimental data and an indication on the reducibility of the
number of parameters used in the model.

1. Introduction

1.1. An overview of soft tissue modeling

Many biological soft tissues can be described by hyperelastic
models, viscoelastic models, or even by more general models (see,
e.g., [6,9,13,26,28,29] and their references). As a consequence, a lot of
experiments can be numerically simulated and the related material
parameters implemented in the model describing tissue properties can
be adjusted in order to recover the experimental data.

Nevertheless, there are several open issues about inverse approaches
in hyperelasticity, as shown in the literature (see, e.g., [1] and
references therein). We first point out that an inverse problem is
usually related to a model which can be defined by different possible
families of material parameters. Hence, once the experimental data and
a related model have been fixed, one must adopt an optimal approach
in order to localize the material parameters.

The first general domain of parameters must provide physically
reasonable material behavior of the model. It is well known that for
hyperelastic models such a behavior is guaranteed by the polyconvexity
condition of the strain energy function with respect to the deformation
gradient (see, e.g., [7,20,25,2,3,26], and their references). The second
more specific domain of parameters must match a known family of
stress-strain curves given by the experimental data obtained for the
specific tissue. With respect to this issue, various approaches can be
given. Often a cost function and a suitable algorithm are employed to

evaluate and minimize the differences between experimental data and
model simulations. For example, the particular simulated annealing
algorithm, developed in [8], has been proved suitable for the complex
behavior of the cost function. Optimization algorithms must be further
enhanced because of the multimodal behavior of the cost function.
Thus, coupled deterministic - stochastic algorithms have been devel-
oped (see for example [17,18] and the references therein). The
approach allows both to minimize the discrepancy between experi-
mental and model results and to explore the domain of admissible
parameters.

In another type of approach an easy fitting of polyconvex stored
energies can be applied to soft tissues with no optimization procedure.
This is shown for example in [3]. We stress that in both approaches the
final target is to find at least one vector of constitutive parameters for
one given tissue, thus avoiding a complete analysis of the model and its
dependence from the parameters.

1.2. On the determination of material parameters

In view of the different determination procedures of parameters
outlined above, we stress that another related meaningful issue is that
of uniqueness of the constitutive parameters for a given tissue. In fact, a
given set of experiments on a soft tissue can provide only a certain
number of limited information about the mechanical behavior of a
material. The vector of the material parameters might be modified by
increasing the set of the known experiments. This leads to the issue of
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the non-uniqueness of the parameters inferred by the model. This is an
open problem for many hyperelastic models of tissues, and it seems that
there is not a general solution to it (see, e.g. the different approaches in
[1,10,12,14,15,22,26,27] and the references therein). We also remark
that increasing the number of experimental data could be useful to
recover uniqueness of the material parameters, but this feature seems to
be connected with the particular choice of the model.

In some papers, the issue of non-uniqueness of the material
parameters does not play any role because their goal is to represent
the characteristic stress-strain curve for a given restricted set of
experiments (see, e.g., Sect. 4.1 in [2]).

For the hyperelastic model presented here, we consider the pro-
blems of the determination of the material parameters and also of their
uniqueness (see Section 3.1). A fully incompressible hyperelastic model
and an almost incompressible hyperelastic model are used to identify
the constitutive parameters on different kind of tissues.

This approach can be extended also to other hyperelastic models,
viscoelastic models, and also to more general models.

1.3. Outline of the results

In what follows, we provide an overview of the main results of the
paper with respect to the above discussed topics.

In Section 3.1 we introduce the hyperelastic model with the strain
energy function, related invariants, and constitutive parameters. In
Section 3.2 we prove the property of polyconvexity of the strain energy
function W W ωC= ( , ), where C F F= T is the right Cauchy-Green strain
tensor, F is the deformation gradient and ω ∈ N is the vector whose
components are the constitutive parameters (here N = 2, 4, 6). It turns
out that W is twice continuously - differentiable with respect to C and
continuous with respect to ω.

It is well known that polyconvexity of the energy guarantees the
physical behavior of the model. In our model such property holds when
the set of constitutive parameters Ω ⊂ N has the form

Ω ω ω ω ω= {( ,…, ) = ∈ > 0}.N
N

i1 (1)

Thus within this domain we look for the regions of parameters that
guarantee the match between the model

ω W ωP F F F( , ) = 2 ∂ ( , ).C (2)

(first Piola-Kirchhoff tensor) and the experimental data.
As it is known, in the fully incompressible case we have

p WP F F= − + 2 ∂T
C

− where p is a Lagrange multiplier.
For a given family of deformation gradients j MF{ : 1 ≤ ≤ }j , let yj

be the mean value of the experimental data set caused by the
deformation Fj, which is taken on a given specimen. Then we look for
a vector ω that minimizes the cost function
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within a prefixed tolerance.
This is done by a coupled stochastic-deterministic algorithm of the

kind briefly discussed above and used for similar models in, e.g., [7,20]
and in the references therein. In particular, a (stochastic) simulated
annealing algorithm to find a first approximated local minimum. Then,
we apply a (deterministic) simplex method to find a local minimum.

After that, we need to study all the possible other material
parameters ω∼ which are, in a fixed bounded region of Ω, equivalent
to ω . We first select ω∼ in such a way that

σ ω y σ ω y( , ) ≤ ( , ).∼ (4)

In addition, as a second requirement we make use of the so-called
Hausdorff distance dH between sets (see for example [4] and the
references therein). Let us recall that the Hausdorff distance between
two sets X Y, ⊂ 2 with Euclidean distance on 2, is defined by

X Y X Y Y X X Y d x yd d d d( , )≔max{ ( , ); ( , )} ( , )≔sup inf ( , ).
x Xy Y

H
∈ ∈ (5)

It is used to compare the graphs of the curves relating the experimental
data to the model. It guarantees a satisfactory analysis of the tissues.
Now, let ω( ) ⊂ 2� be the graph of the curve given by P ωF( , )11 for
F F= j and fixed ω, and let ⊂ 2� be the graph of the experimental
curve with values yj; then the inequality

ω ωd d( ( ), ) ≤ ( ( ), )∼
H H� � � � (6)

determines the second selection of the parameters ω∼. As we will show in
Section 3.3, various two dimensional regions of parameters can be
displayed by looking at different material parameters satisfying (4) and
(6). As explained above, the parameters ω∼ are minimizers of the cost
function σ as well as the parameter ω . However, in order to determine
the set of parameters ω∼ we need first to determine at least a parameter
ω and then we can write inequalities (4)–(6) and call a related routine
that determines numerically the set of ω∼. This numerical study is
obtained through MATLAB® (software house MathWorks). The related
algorithm can be easily adjusted for different stress tensors and thus for
different hyperelastic models. A qualitative analysis of such regions of
parameters, for different experimental data, provides useful informa-
tion about the mechanical properties of the tissue under study and also
some indicators of the optimality of the chosen hyperelastic model.

The novelty of our study is to show the possibility of a more
complete analysis of the material parameters of a soft tissue (here in
particular urethral tissue). This involves not only the determination of a
(vector of) material parameter ω as done previously, but in addition the
determination of the larger set of parameters providing the same
minimization of cost function involving the model and the experiment.

2. Settings and preliminaries

In this section we provide a summary of notations used in the paper
together with some central definitions of hyperelasticity.

We denote by Lin+ the set of all second-order tensors with positive
determinant, to be identified with the family of 3×3 matrices n n× with
positive determinant. The set Orth+ is the subset of Lin+ given by rigid
rotation tensors R, namely such that RR I=T , where I is the unit tensor.
The set Sym+ is the subset of Lin+ of symmetric tensors U, i.e. such that
U U= T .

Following the notations of continuum mechanics, here F ∈ Lin+

denotes the deformation gradient, C F F= ∈ SymT + denotes the right
Cauchy-Green deformation tensor, the map WF F F∈ Lin ⟼ ( ) ∈T+ is
the strain energy function, and the first Piola-Kirchhoff stress tensor
reads WP F= 2 ∂C . We refer the reader to the standard textbooks of
continuum mechanics [13,23,24,28].

Definition 2.1. A map WF F∈ Lin ⟼ ( ) ∈+ is said to be convex if

W τ τ τW τ WF F F F( + (1 − ) ) ≤ ( ) + (1 − ) ( )1 2 1 2 (7)

for every F F,1 2 and τ with τ0 ≤ ≤ 1.
In the following, we recall some generalized convexity conditions.

In particular, from [23] we recall

Definition 2.2. A map WF F∈ Lin ⟼ ( ) ∈+ is said to be polyconvex if
there exists a function    P: × × →3×3 3×3 such that

W PF F F F( ) = ( , Adj[ ], det[ ]) (8)

and  X Y Z P X Y Z( , , ) ∈ ⟼ ( , , ) ∈͠ ͠∼ ∼∼ ∼19 is convex.
The policonvexity property is usually used to select physically

reasonable models (see, e.g., [26] and the references therein).

Definition 2.3. A twice differentiable function WF F∈ Lin ⟼ ( ) ∈+

fulfills the Legendre-Hadamard condition if a b∀ , ∈ 3, F∀ ∈ Lin+ we
have

W a b a bFD ( ). ( ⊗ , ⊗ ) ≥ 0.F
2 (9)

L. Zanelli et al. International Journal of Non-Linear Mechanics 89 (2017) 142–150

143



Download English Version:

https://daneshyari.com/en/article/5016630

Download Persian Version:

https://daneshyari.com/article/5016630

Daneshyari.com

https://daneshyari.com/en/article/5016630
https://daneshyari.com/article/5016630
https://daneshyari.com

