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a b s t r a c t

The article presents a new approach to the analysis of light propagation in photorefractive materials. The
discussed numerical method can be used for an analysis of the dynamics of nonlinear effects taking place
in those media in which an analytical approach requires the use of approximations or is impossible. As an
example of how the method works, the results of simulation are shown, illustrating the process of spatial
solitary wave formation in two materials: a photorefractive semiconductor and a ferroelectric crystal.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Photorefractive materials have been drawing much interest
since first research publications describing them appeared [1]. This
interest is connected with highly promising prospects for their
applications, particularly in the field of all-optical processing and
switching of light [2–4]. One of the main fields of promising re-
search now underway is the generation of photorefractive solitary
waves [5,6] and an analysis of possibilities to control them by
the management of their trajectories [7–9] or soliton interactions
[10,11]. Notably, such research is often carried out in the context
of specific applications—for example, in optical telecommunica-
tions [12–14].

Interesting potential applications direct research towards seek-
ing new materials, which broadens the family of media displaying
the photorefractive effect. So far, the effects connected with self-
trapping of light have been investigated or observed in such mate-
rials as: ferroelectric oxides [15], sillenites [16], paraelectrics [17],
photorefractive polymers [18], organic glasses [19] and semicon-
ductors [20,21]. The diversity of photorefractive media is due to
complexity and dissimilarity of physical processes taking place in
particular materials. This, in turn, necessitates expanding theoret-
ical models of the photorefractive effect in various materials. The
simplest strategywithin the band transportmodel frames accounts
for one type of carriers (most often electrons) excited from a sin-
gle deep-level dope (most often donors). However, in the case of
many interesting photorefractive materials this strategy proves to
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be insufficient. It is often necessary to account for the transport
of both electrons and holes [22], additional doping levels [23,24]
or in the case of semiconducting materials, the hot electron phe-
nomenon [25–27].

In terms of mathematics, the relations describing the photore-
fractive process in a givenmaterial usually forma systemof nonlin-
ear partial differential equations, strongly coupledwith each other.
In the case of both typical materials (for which the photorefractive
effect can have the simplest model), and those that are more com-
plex, an analytical solution of this equation system is possible only
through approximations, or is just impossible. An alternative way
is the use of numerical methods which enable accurate solutions
that, fill in the blanks arising in the analytical approach, and pro-
viding a verification of the approximations used so far.

This article shows how the development and combination of
known numerical algorithmsmay be used for an effective numeri-
cal analysis of nonlinear light propagation in photorefractivemate-
rials, both typical ones and those requiring more complex models.
The presented results have been obtained using an algorithm that
in the author’s opinion may be relatively easily modified as well as
developed in its implementation phase. A reference point is semi-
conducting materials whose relatively complex model is based on
transport of both electrons and holes, and which accounts for the
hot electron phenomenon. For a comparison, the results of calcu-
lations made for a standard model describing the propagation of
solitons, for example in selected ferroelectric oxides are presented
as well.

2. Theoretical background

One characteristic feature of the photorefractive effect is that it
may take place in media where free charge carriers are excited by
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light. Excited carriers move by diffusion and under the influence
of external electric field, until the moment of their recombination
with traps, which is most likely to take place in unlighted areas. If
the light falling on the material has non-uniform intensity, it will
cause a non-uniform spatial charge distribution, resulting in the
appearance of internal electric field. This field causes the refractive
index to change through the electro-optic effect, which influences
the propagation of optical beam.

The simplest mathematical approach to the photorefractive ef-
fect is based on the so-called Kukhtarev–Vinetski model [28]. In
its original form this model reflects a weakly doped dielectric
medium, where the charge carriers are electrons, optically excited
from a deep donor level. In such case an inequality ND > NA is ful-
filled, where ND is donor concentration and NA is shallow acceptor
concentration. The equation system describing the photogenera-
tion, transport and trapping of carriers takes the following form:
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where n describes electron concentration, β is a coefficient of ther-
mal generation of carriers from deep traps, γ is a coefficient of
recombination of carriers with traps, S = δ/hν is photoioniza-
tion cross-section divided by photon energy, µ—carrier mobility,
J—current density, E—electric field intensity inside a medium, I—
light intensity distribution, q—elementary charge, kB—Boltzmann
constant, ε0 is the vacuum permittivity, ε is the dielectric constant,
T—temperature, N+

D —ionized donor concentration.
In order to make an analysis of nonlinear light propagation in a

material of such characteristics, the equation system (1a)–(1d) has
to be supplemented with a nonlinear wave equation. For a two-
dimensional case (1 + 1)D, the electrical component of the elec-
tromagnetic wave propagating in the direction of the z-axis:
Eopt(x, y, z, t) = A(x, y, z) exp(iωt − ikz),
fulfills the nonlinear propagation equation:
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where k = 2πnb/λ is wave number, ω = 2πc/λ is angular
frequency, 1n is the optically induced change of refractive index
nb. Approximate steady-state solutions of equation system (1) to-
gether with an analysis of photorefractive soliton states have been
presented in the works [5,6], while time-dependent solutions are
outlined in [29,30]. The analysis of both steady state and tempo-
ral states is based on approximations justified in the case of many
typical materials, which allows us to reduce the problem described
by Eqs. (1)–(2) to a single nonlinear differential equation. Further
research into nonlinear light propagation is most often carried out
by numerical analysis of the nonlinear propagation equation [31,
32] obtained for the examined problem. Unfortunately, for many
interesting optical materials the photorefractive effect has to be
described using more complex models than the one outlined by
equation system (1). In those cases the reduction of the nonlin-
ear propagation problem to a single differential equation may be
difficult, or will require significant approximations limiting a full
analysis. In such cases, the problem can be solved using a fully nu-
merical approach. Interesting and different than presented in this
paper numerical models, have been shown in the works [33,34].

Photorefractive semiconductors are an interesting example of
materials where the photorefractive process is more complex than
the one described by equation system (1). Basic differences result

from a more complex transport of carriers, which has a bipolar
character in this particular case. The presence of both electrons and
holes has been discussed mostly in the works devoted to analy-
ses of photorefractive gratings [22–24,27] and to a lesser but still
significant extent, to the phenomena involved in nonlinear light
propagation [35–37]. One additional complication appearing in
the analysis of photorefractive transport in semiconductors is the
‘‘hot-electron’’ effect. Semiconductors such as GaAs or InP feature
a conduction band having a distinct central minimum Γ with high
mobility of carriers, and higher located (but still close) side val-
leys L characterized by lower mobility. When an electric field hav-
ing intensities exceeding some critical value EC is applied to such
media, the result is that some of the electrons heated by the field
are transferred from valley Γ to valley L. As a result, the relation
between electron velocity and the electric field intensity becomes
strongly nonlinear in the range of electric fields whose intensities
exceed the critical value. Therefore, the equation systemdescribing
the photorefractive process in such materials takes into account
both the electron and hole transport and the dependence of elec-
tronmobility and temperature on electric field intensity [27,36,37].

If we assume that acceptors are deep traps, for semiconductors
the equation systemdescribing the photogeneration, transport and
trapping of carriers may take the following form:
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where n describes the concentration of electrons, p describes the
concentration of holes, µn (E) is the mobility of electrons depend-
ing on the electric field, Tn (E) is the temperature of electrons,µp is
themobility of holes, TL is a lattice temperature, whileϕ is the elec-
trical potential in the material, and N−

A the ionized acceptor con-
centration. Parameters S and β are defined similarly to the case in
Eqs. (1). The model additionally assumes that the carriers can be
excited not only in transitions from the trap level, but also in inter-
band transitions [33,34]. The value of b describes the absorption
coefficient corresponding to inter-band transitions.

The electrons heated by the electric field reach a temperature
whichmay significantly exceed the lattice temperature TL. Its value
may be formally determined using this relation [3]:

Tn (E) = TL +
2qτrvn (E)

3kB
E, (4)

where v(E) is an electron drift velocity depending on the electric
field, τr is an average energy relaxation time with values ranging
from0.1 to 1 ps [25,26]. The relation between electronmobility and
electric field intensity in the twin valley model may be expressed
as a weighted average:
µn(E) = µnlf (E) + µnu[1 − f (E)], (5)
where µnl and µnu are, respectively, carrier mobilities in central
and side valleys, while f (E) is a distribution function describing
the population of the central valley with the following relation:

f (E) =


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
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(6)

where 1U is an energy difference between the central and side
minimum, while R is a ratio of state density in the central and side
valleys. For gallium arsenide R = 94, 1U = 0.31 eV.
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