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a b s t r a c t

In this paper, a procedure for computing local optimal solution curves of the cost parameterized optimiza-
tion problem is presented. We recast the problem to a parameterized nonlinear equation derived from its
Lagrange function and show that the point where the positive definiteness of the projected Hessian ma-
trix vanishes must be a bifurcation point on the solution curve of the equation. Based on this formulation,
the local optimal curves can be traced by the continuationmethod, coupledwith the testing of singularity
of the Jacobian matrix. Using the proposed procedure, we successfully compute the energy diagram of
rotating Bose–Einstein condensates.

© 2013 Published by Elsevier B.V.

1. Introduction

Cost parameterized optimization problems widely arise in
many fields of science and engineering. Mathematically the prob-
lem can be described as

Minimize (or Maximize) f (x, p)
subject to g(x) = 0, (1.1)

where f (x, p) ∈ C2(Rn
× [a, b]) is a parameterized cost function

with parameter p ∈ [a, b] and g(x) ≡ (g1(x), . . . , gm(x))T with
gj(x) ∈ C2(Rn) for j = 1, . . . ,m are constraints. The local opti-
mal solution set within a certain parameter interval is desired. In
this paper, we propose an efficient procedure to track local optimal
curves within a prescribed parameter interval.

When the parameter p is given, various optimization algo-
rithms, e.g. conjugate gradient methods, interior-point methods,
gradient projection methods, etc., have been well developed to
find a local optimal solution [1,2]. For computing the local opti-
mal curves, applying these methods for a large number of given
parameters is difficult to determine the end points of the maximal
parameterized interval. Even worse, this exhausted approach may
miss some critical optimal solutions especially when multi-stable
regions exist. Fig. 1 illustrates a bi-stable region. A local optimal
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curve is parameterized over (pℓ
1, p

r
1), and the other is parameter-

ized over (pℓ
2, p

r
2), where end points pℓ

1 < pℓ
2 < pr1 < pr2. The

region (pℓ
2, p

r
1) has two distinct local optimal solutions.

The continuation method is a powerful tool for tracking the so-
lution curve of an equation with a parameter. The advantage of
employing continuation method to problem (1.1) is its capability
to trace the continuity property of optimal solution. We consider a
parameterized nonlinear equation derived from the Lagrange func-
tion associated with (1.1). For a given parameter, the solutions of
this equation are the candidates of local optimality. From the suf-
ficient optimality conditions, the positive definiteness of its corre-
sponding projected Hessian matrix guarantees the solution to be
locally optimal. However, the additional computations for deter-
mining the positive definiteness of matrices are quite expensive.
We give an invariant theorem (see Theorem2.5) of inertia between
the Jacobian matrix and projected Hessian matrix, and show that a
bifurcation branch occurs at the point where the positive definite-
ness of the projected Hessian matrix vanishes. Therefore, we can
track the solution curve by continuation method until a singular
point is met. It is clear that checking the singularity of Jacobian is
much cheaper than detecting the positive definiteness of a matrix,
so the resulting algorithm is more efficient.

In the following subsection, we give a brief outline of the con-
tinuation method. In Section 2, we discuss the related theorems
and propose a procedure for tracking the local optimal curves over
a prescribed interval. The numerical results of computing the en-
ergy diagram of rotating Bose–Einstein condensates by the proce-
dure will be presented in Section 3.
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Fig. 1. The cost value of two local optimal curves. One is parameterized over
(pℓ

1, p
r
1), and the other is parameterized over (pℓ

2, p
r
2), where end points pℓ

1 < pℓ
2 <

pr1 < pr2 . The bi-stable region is (pℓ
2, p

r
1).

1.1. A framework of continuation method

Continuation methods are numerical schemes aiming to com-
pute approximate solutions of a system of parameterized nonlin-
ear equations. Here, we give a brief account of the main ideas. The
detailed description of the methods can be found, for example, in
[3,4].

In general, a parameterized nonlinear equation system can be
denoted as
G(z, p) = 0, (1.2)
where G : RN

× R → RN is a continuously differentiable function,
z ∈ RN , p ∈ R is a natural parameter. Parameterizing z by p, a
solution curve of (1.2) can be defined as

CI =

(z(p), p) ∈ RN+1

| G(z(p), p) = 0, p ∈ I

, (1.3)

where I is an interval. To follow the solution curve (1.3), a con-
tinuation method usually takes a prediction–correction approach.
In particular, starting from the point zi = z(pi) ∈ RN which is
a solution point lying (approximately) on a solution curve CI , the
prediction and correction steps are described as follows:
• in the prediction step, the Euler predictor

zi+1,1 = zi + hiżi,
is computed. Here, żi = ż(pi) is the tangent vector of the
solution curve at zi and hi > 0 is a suitable step length. Set
pi+1 = pi + hi. To compute żi, we solve the linear system

Gz(zi, pi)żi = −Gp(zi, pi),
which is obtained by differentiating (1.2) with respect to p;

• in the correction step, Newton’s method is usually used to
compute the approximate solution ofG(z, pi+1) = 0with initial
value zi+1,1. That is, for the correction vector δl, the iteration
zi+1,l+1 = zi+1,l + δl is computed for l = 1, 2, . . . until a
convergence criterion is satisfied for l = l∞. Finally, zi+1 =

zi+1,l∞ is taken as a new approximate solution on the solution
curve CI .

2. The tracking procedure

In the following, we only discuss the cost parameterized
minimization problem:

Minimize f (x, p)
subject to g(x) = 0, (2.1)

where f (x, p) ∈ C2(Rn
× [a, b]) is a parameterized cost function

with parameter p and g(x) ≡ (g1(x), . . . , gm(x))T with gj(x) ∈

C2(Rn) for j = 1, . . . ,m. The theories and the algorithms for the
maximization model can be derived in a similar way. Throughout
this paper, we use the bold face letter or symbol to denote the
matrix or vector. For a matrix A, AH and AT denote the conjugate
transpose and transpose of A, respectively. For a Hermitian matrix
A, we use A > 0 (A > 0) to denote that A is positive definite
(positive semi-definite). For A ∈ Rn×m, N (A) and AĎ

∈ Rm×n

denote the null space ofA and the pseudoinverse ofA, respectively.

2.1. Preliminaries

We shall introduce some definitions and preliminary theorems
in this subsection. The feasible domain of (2.1) is the set of points
x that satisfy the constraints; namely,

F = {x ∈ Rn
| g(x) = 0}.

A point x∗ ∈ F is a (strict) local solution of the optimization
problem (2.1)with a parameter p if there is a neighborhoodN of x∗

such that f (x, p) > f (x∗, p) (f (x, p) > f (x∗, p)) for all x ∈ N ∩ F
with x ≠ x∗. A curve Γ = {x(p) : p ∈ I} ⊂ F is called a local
minimal curve of problem (2.1) if I ⊆ [a, b] is an interval and x(p)
is a local solution of problem (2.1) with each p ∈ I . We say that
the linear independence constraint qualification (LICQ) holds at
x ∈ F if

∇g(x) ≡ [∇g1(x), . . . ,∇gm(x)] ∈ Rn×m

is of full column rank. The corresponding Lagrange function to the
optimization problem (2.1) is

L(x, v, p) = f (x, p) +

m
j=1

vjgj(x),

where v = (v1, . . . , vm)T ∈ Rm with the Lagrange multipliers vi’s.
For a given parameter p ∈ [a, b], we sayKarush–Kuhn–Tucker

(KKT) conditions hold at x, if there exists a vector v ∈ Rm such that

∇xL(x, v, p) = ∇xf (x, p) +

m
j=1

vj∇gj(x) = 0 and

g(x) = 0.

(2.2)

In this case, x ∈ Rn is called a KKT point for the optimization
problem (2.1) with a parameter p.

Let P(x) ∈ Rn×(n−m) be a matrix whose columns form an
orthonormal basis of N (∇g(x)T ). Then the projected Hessian
matrix is defined as

H(x, v, p) = P(x)T∇2
xxL(x, v, p)P(x) ∈ R(n−m)×(n−m). (2.3)

Theorems 2.1 and 2.2 are the direct results of the standard nec-
essary and sufficient conditions theorem for (non-parameterized)
optimization problem, respectively.

Theorem 2.1 (Necessary Conditions). Suppose that x∗ is a local
solution of optimization problem (2.1) with a given parameter p and
that the LICQ holds at x∗. Then there is a Lagrange multiplier vector
v∗ ∈ Rm such that KKT conditions (2.2) are satisfied and the projected
Hessian matrix H(x∗, v∗, p) is positive semi-definite.

Theorem 2.2 (Sufficient Conditions). Suppose that the parameter
p ∈ [a, b] is given and x∗ ∈ Rn is a KKT point for optimization prob-
lem (2.1) with Lagrange multiplier vector v∗ ∈ Rm. If the projected
Hessian matrixH(x∗, v∗, p) is positive definite, then x∗ is a strict local
solution of problem (2.1).

Let CI in (1.3) be a solution curve of (1.2). A point (z0, p0) ∈ CI
with p0 being an interior point of I is said to be a bifurcation point
of (1.2) if every ball Bρ(z0, p0) of radius ρ > 0 contains solutions of
(1.2) which are not on CI . The following bifurcation test theorem
can be found in [4].

Theorem 2.3 ([4, Bifurcation Test]). Let CI be a solution curve
of (1.2) parameterized by p ∈ I . If det(Gz(z(p), p)) changes sign
at some interior point p0 of I, then (z(p0), p0) is a bifurcation point
of (1.2).
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