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a b s t r a c t

Two new second order accurate Monte Carlo integration schemes are derived for the stochastic differ-
ential equation describing pitch-angle scattering by Coulomb collisions in magnetized plasmas. Here the
pitch-angle is the angle between the magnetic field and the particle velocity vectors. Mathematically this
collision process corresponds to diffusion in the polar angle of a spherical coordinate system. The schemes
are simple to implement, they are naturally bounded to the solution domain and their convergences are
shown to compare favourably against commonly used alternative integration schemes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Accurate numericalmodelling of Coulomb collisions in guiding-
centre following particle codes is of fundamental importance in
many areas of plasma physics. Examples can be found in, e.g., neo-
classical and turbulence transport models [1–3] and in the study
of wall load due to toroidal magnetic field ripple [4]. When mod-
elling these problems with particle codes it is common to sepa-
rate the numerical integration of the guiding-centre orbits and the
collisions, and to use higher order Runge–Kutta schemes for the
orbit integration, while the order of the convergence of the colli-
sion integrator is low [1]. This ensures the conservation of orbit
invariants, thus reducing the numerically induced transport. In
comparison, a small numerical error in the collision integrator
tends to cause a relatively modest error in the transport. Further-
more, this is a particularly efficient solutionwhen the collisionality
is low, like in the plateau and banana collisionality regimes, where
the numerical error is likely to be dominated by the orbit tracing.
The picturemay however be quite different in the Pfirsch–Schlüter
regime, where the time scales for the guiding centre orbit and the
collisions are of the same order. Here the numerical error is a com-
bination of the errors from integrating the orbits and the collisions,
as well as an error from the separation of these two processes. In
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this regime the relatively large error from the collisions tends to
dominate, thus requiring short time steps and massive computa-
tional resources to achieve convergence.

In this work we derive two new numerical schemes for the part
of the collision operator thatmodifies the directions of the velocity
vector without modifying the total velocity, the so called pitch-
angle scattering. Mathematically, this type of scattering process
is equivalent to isotropic diffusion on the sphere, a topic that has
application in other fields of applied mathematics e.g. [5].

The outline of the paper is as follows. In Section 2 we give a
brief overview on the guiding-centre drift equationwith collisions.
Section 3presents the operator splittingmethod and the error from
the separation of the orbit integrator and the collision integrator
is discussed. Two new numerical schemes for the pitch-angle
scattering process are derived in Section 4 based on the method of
operator splitting. The new schemes are benchmarked in Section 5
and are followed by conclusions in Section 6.

2. Drift-kinetics with Coulomb collisions

The central result of this paper are the new numerical schemes
for the modelling of diffusion on a sphere using a particle
representation, as described in Section 4. While this scheme
has application in many fields of applied mathematics, we have
here chosen to study an application in plasma physics, more
specifically, in guiding centre following codes with Coulomb
collisions. The physics included in such codes can be described by
the drift kinetic equation for the distribution function f = f (R,
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v, t), where R is the gyro centre position and v is the velocity

∂ f
∂t

+ L0f =
∂ f
∂t

+ Ṙ · ∇f + v̇ · ∇vf = C(f , f ). (1)

Here C is the collision operator, ∇v is the del-operator in velocity
space, and Ṙ and v̇ are the gyro centre drift velocity and acceler-
ation, [6–8]. In general the Coulomb collision operator is a non-
linear operator depending on the Rosenbluth potentials [9], which
are quite a challenge to model accurately. However, in many ap-
plications the collision operator can be approximated by C(fM , f ),
where fM is a Maxwellian distribution function. This simplifies the
relevant derivatives of the Rosenbluth potentials to the analyti-
cal Chandrasekhar coefficients α(v), β(v), γ (v) [10] expressed in
spherical coordinates (v, θ, φ), where v = ∥v∥, cos θ = v ·

B/(|v||B|), andφ is the gyro angle. The collision operator reduces to
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is the Lorentz operator, which is one half of the Laplace operator on
the sphere. Even though this model is linear, some nonlinear effect
can be accounted for by regularly recalculating the Chandrasekhar
coefficients using temperatures and densities estimated from the
test particle distribution [11]. In many applications the gyro angle
dependence in (3) can be neglected, since it relaxes on the rapid
time scale of the gyro period, leaving

L =
1
2

∂

∂ξ
(1 − ξ 2)

∂

∂ξ
(4)

with ξ = cos θ , ξ ∈ D = [−1, 1]. Green’s function for this oper-
ator can then be studied with the following reduced kinetic equa-
tion:

∂ f̃
∂t

(ξ , t) =
1
2

∂

∂ξ


1 − ξ 2 ∂ f̃

∂ξ
(ξ, t), (5)

with the initial condition f̃ (ξ , 0) = δ(ξ−ξ0). Note thatwe have as-
sumed γ (v)/2v2

= 1, which correspond to a rescaling of the time,
γ (v)t/2v2

→ t . The general solution can be written explicitly in
terms of the Legendre polynomials Pn,

f̃ (ξ , t) =

∞
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−
1
2
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 
n +
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The stationary solution ( ∂ f̃
∂t = 0) is particularly simple:

1
2

∂
∂ξ


1 − ξ 2


∂ f̃
∂ξ

= 0 ⇒ f̃ = 1/2, which is a flat distribution in D .

3. Operator splitting

Operator splitting is a well-established method for the numer-
ical integration of problems with great numerical complexity [12].
The central idea is to split the problem into several simpler prob-
lems. Consider the following example:

∂ f
∂t

= (A + B)f , f (·, t = 0) = f0, (7)

where A, B are linear autonomous operators. The solution in
terms of the exponential map is given by f (·, t) = exp(At +

Bt)f0. By assuming small times t : ∥At∥ + ∥Bt∥ ≪ 1, the

Fig. 1. Illustration of the two alternative approaches of splitting. In this paper we
first split the PDE and derive the ODE and the SDE for each sub-problem. Note that
the leading order derivative of the PDE is given in the parenthesis.

exponential map can be approximated by a product of maps, a so-
called Lie–Trotter splitting [12]

exp(At + Bt)f0 = exp(At) exp(Bt)f0 + ϵ (8)

where ϵ is the error. Note that this corresponds to solving (7) with
the following sub-problems:

∂h
∂t ′

= Bh, t ′ ∈ [0, t], h(·, 0) = f0 (9)

∂g
∂t ′

= Ag, t ′ ∈ [0, t], g(·, 0) = h(·, t). (10)

The error is easily calculated for small time steps, t → ∆t

ϵ =
1
2
∆t2 ([B, A]) f0 + O(∆t3), (11)

where [·, ·] is the commutator. The split described above concerns
only PDEs. To construct the split for the corresponding SDE, there
are two alternative approaches. One option is to first derive the SDE
and then split the SDE in two parts. This is the method described
in [13]. The alternative is to first split the PDE and derive the two
SDEs; see Fig. 1.

When the norm of the operators are comparable, the above
splitting yields a local error of ϵ ∼ O(∆t2) and a global error
of


ϵ ∼ O(∆t), where the sum is over all time steps. To im-

prove the convergence we have to turn to more advanced ways
to split (7) [12].

A second order accurate splitting scheme is the well-known
symmetric method according to Strang [14],

exp(A∆t + B∆t)f0
= exp(A∆t/2) exp(B∆t) exp(A∆t/2)f0 + ϵ. (12)

The symmetric splitting has a local error

ϵsym =
1
2
∆t2 ([B, A] + [A, A] + [A, B])  

=0

f0 + O(∆t3).

This gives a global error of O(∆t2). As an example, we can
apply this result on the guiding-centre equation (1) to obtain the
following second order composition:

∂h1

∂t
= Loh1, t ∈ [0, ∆t/2], h1(·, 0) = f0

∂g
∂t

= Cg, t ∈ [0, ∆t], g(·, 0) = h1(·, ∆t/2)

∂h2

∂t
= Loh2, t ∈ [∆t/2, ∆t], h2(·, ∆t/2) = g(·, ∆t).

(13)

Note that for the total error to be of second order, all three steps
in (13) have to be integrated with at least second order accuracy.
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