Accepted Manuscript

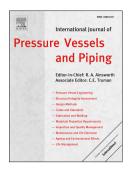
Residual stress measurements in steel pipes using DSPI and the hole-drilling technique

Livia R. Lothhammer, Matias R. Viotti, Armando Albertazzi, Jr., Celso L.N. Veiga

PII: S0308-0161(16)30059-X

DOI: 10.1016/j.ijpvp.2017.05.008

Reference: IPVP 3617


To appear in: International Journal of Pressure Vessels and Piping

Received Date: 10 February 2016
Revised Date: 24 November 2016

Accepted Date: 9 May 2017

Please cite this article as: Lothhammer LR, Viotti MR, Albertazzi Jr. A, Veiga CLN, Residual stress measurements in steel pipes using DSPI and the hole-drilling technique, *International Journal of Pressure Vessels and Piping* (2017), doi: 10.1016/j.ijpvp.2017.05.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Residual Stress Measurements in Steel Pipes using DSPI and the Hole-

Drilling Technique

Livia R. Lothhammer, Matias R. Viotti*, Armando Albertazzi Jr., and Celso L. N. Veiga

Laboratório de Metrologia e Automatização, Universidade Federal de Santa Catarina, CEP 88040-970,

Florianópolis, SC, Brazil

*corresponding author: matiasviotti@gmail.com

Abstract

The oil and gas industry employs long distance pipelines to simplify the transport logistic and to reduce the final

costs of petroleum derivatives. For the construction of pipelines, nowadays it is usual the application of pipes

which are manufactured by cold forming operations. The high level of the non-uniform plastic deformation of the

steel during the pipe manufacturing process produces residual stresses. These stresses are internally self-

equilibrated, but locally can affect the structural integrity of the pipeline. Therefore, an accurate measurement of

residual stresses is important to guarantee a safe and healthy pipeline network. This paper shows the application

of a portable optical device combining digital speckle pattern interferometry and the hole drilling technique to

measure residual stress fields in pipe samples manufactured by the UOE-SAW and ERW processes. A set of 72

measurements were performed in order to scan the residual stress distribution along the external surface of each

pipe. On the other hand, a smaller set of measurements were performed in the internal surface of an ERW pipe

sample. Considering all cases, the mapping has revealed the presence of stress profiles which were compressive in

the first half of the hole and tensile in the second one. Additionally, the external measurements demonstrated a

good repeatability between them, indicating a similar stress behavior along the circumferential and longitudinal

directions of the pipe.

Keywords: Residual stresses, DSPI, pipelines, hole-drilling, ERW and UOE processes.

Download English Version:

https://daneshyari.com/en/article/5016870

Download Persian Version:

https://daneshyari.com/article/5016870

<u>Daneshyari.com</u>