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a b s t r a c t

Friction coupling affects water hammer evolution in pipelines according to the initial flow regime. Un-
steady friction models are only validated with uncoupled formulation. On the other hand, coupled
models such as four-equation model, provide more accurate prediction of water hammer since fluid-
structure interaction (FSI) is taken into account, but they are limited to steady-state friction formula-
tion. This paper deals with the creation of the “four-equation friction model” which is based on the
incorporation of the unsteady head loss given by an unsteady friction model into the four-equation
model. For transient laminar flow cases, the Zielke model is considered. The proposed model is
applied to a quasi-rigid pipe with axial moving valve, and then calculated by the method of character-
istics (MOC). Damping and shape of the numerical solution are in good agreement with experimental
data. Thus, the proposed model can be incorporated into a new computer code.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Water hammer problem is relevant to various branches of in-
dustry such as water-supply-networks, industrial conduits, cooling
circuits of thermal and nuclear power plants, etc. Perturbation in
the fluid flow is produced due to several operations such as starting
or failure in pump and turbine and also fast opening or closing of
the valve. Mechanical loadings on pipe systems caused by water
hammer belong to the most important and most difficult to
calculate design. Severe water hammer often may cause a rupture
of piping components, service pipe failures, joint failures and other
damage to the hydraulic system. This is why water hammer must
be continuously controlled and predicted. Surge suppressors, relief
valves, slow closing gate and cone type valves are examples of
water hammer prevention equipments.

In order to ensure the global economic efficiency and safety
operations of hydraulic systems, several mathematical contribu-
tions are presented. A number of physical parameters can be taken
into account. These include dissolved and free air in the liquid,
unsteady friction, fluid-structure interaction (FSI), viscoelastic
behavior of the pipe-wall material and cavitation. Water hammer

problems are usually simulated using one-dimensional water
hammer equations based on the quasi-steady friction model. The
main assumption of this method is that the head loss during water
hammer phenomenon is equal to the head loss obtained from the
steady flow. However, this assumption is not valid for most of water
hammer problems due to the existence of strong gradients and
reverse flows near the pipe wall.

Unsteady friction models are the subject of various research
projects in research centers all over the world. The most widely
used models consider extra friction losses to depend on a history of
weighted accelerations during unsteady phenomena, or on
instantaneous flow acceleration. The first group of models was
developed by Zielke [1]. These models consider the instantaneous
wall shear stress, which is directly proportional to friction losses, is
the sum of the quasi-steady value and a term in which certain
weights are given to the past velocity changes [1]. This approach is
assigned for transient laminar flow cases. The Zielke model is based
on solid theoretical fundamentals and the multiple experimental
validation tests have shown good conformity between calculated
and measured results. As demonstrated [2], Adamkowsky and
Lewandowsky validated the Zielke model and other several un-
steady friction models against experimental results without junc-
tion coupling (fixed valve).

The objective of this work is to prove the insufficiency of both
Zielke model and four-equation model to simulate water hammer
problems with junction coupling (free moving valve) and to
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validate a proposed model called “Four-equation Friction Model”.
The proposed model will be calculated in a quasi-rigid pipeline
with axial vibration using the MOC, where water hammer is caused
by an instantaneous valve closure. The computation results will be
compared against experimental data.

2. Theory

2.1. Unsteady friction models

Unsteady friction derives from the extra losses caused by the
two-dimensional nature of the unsteady velocity profile [1e3].
Many types of unsteady friction models exist in the literature. As
demonstrated [1], Zielke has developed the convolution-based
unsteady friction model which is based on analytical solutions
obtained for laminar flow (Re � 2320). By assuming the velocity V
is uniform on each section A, Zielke defined the head loss hf as

hf ¼
f

2gD
V jV j þ 16n

gD2

�
vV
vt

*W
�
ðtÞ (1)

where W is the weighting function in time and (*) denotes
convolution.

As described [3], the friction head loss can be thought of as
comprising a steady part and an unsteady part. The first part of Eq.
(1) is the Darcy-Weisbach formulae defining the quasi-steady head
loss per unit, denoted hf $q in this issue. Whereas the second part is
the unsteady head loss per unit, denoted hf $u. This term follows
from the convolution of the weighting function W with past tem-
poral velocity variations vV=vt. Adamkowsky and lewandowsky call
it pipeline inertance [2].

To summarize, Eq. (1) can be written as

hf ¼ hf $q þ hf $u (2)

The development of the convolution relation gives [2,3]

�
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The weighting function is defined [1]

WðtÞ ¼

8>>>><
>>>>:

P6
j¼1

mjt
j=2�1 for t<0;02

P5
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e�njt for t>0;02
(4)

inwhich nj¼f26;3744; 70;8493; 135;0198; 218;0198; 322;5544g,
t¼4nt=D2 and mj¼f0;282095;�1;25; 1;057855; 0;9375;
�0;396696;�0;351563g

The convolution-based unsteady frictional head loss term hf in a
staggered characteristic grid, called full convolution scheme [3] is

hf ðz; tÞ ¼
fVðz; tÞjVðz; tÞj

2gD
þ 16n
gD2

XM
j¼1;3;5;…

½Vðz; t � jDt þ DtÞ

� Vðz; t � jDt � DtÞ�W0ðjDtÞ (5)

with M ¼ t=Dt � 1.
It is worth noting that several friction models are studied in

literature, such as Vardy and Brown model, Brunone model, Zar-
zycki model and others [2e4].

Nomenclature

Abbreviations
FSI Fluid-Structure Interaction
MOC Method of Characteristics
SLI Space-line interpolation
TLI Time-line interpolation
WSA Wave-speed adjustment

Scalars
g Pipe inclination
n Poisson coefficient
s Stress
S Real positive number
r Mass density
l Characteristic direction
c Anchor coefficient
A Section
C Celerity
D Inner diameter of the pipe
E Pipe thickness
E Young's modulus
F Friction coefficient of Darcy-Weisbach
g Gravitational acceleration
h Unsteady head loss
i Space increment
j Time increment

K Fluid bulk modulos
L Pipe length
M Mass
p Relative pressure in the fluid
R Inner radius of the pipe
T Time
u Displacement
V Cross-sectional averaged fluid velocity
W Weighting function
Z Axial co-ordinate

Matrices and vectors
A;B Stiffness matrices of the hyperbolic linear system
k Second part of the vector s
M Stiffness matrix of the algebraic system
n First part of the vector s
N Matrix used to find the vector n
r Right hand side vector of the hyperbolic linear system
s Right hand side vector of the algebraic system
y Transformed vector of unknowns
Y Matrix used to express the matrix N

Subscripts
F Fluid
0, L Boundary position
P Pipe wall
z Axial direction
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