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A B S T R A C T

Stone fruit is cooled after harvesting to extend its shelf life and prevent postharvest losses.

Because it is quickly subject to chilling injuries at inappropriate temperatures, its thermal

properties should be known in order to design an optimum cooling process. However, how

long does it take for an olive to reach its storage temperature at the stone–pulp interface?

This paper proposes approximated equations as a model for predicting cooling times at the

stone–pulp interface and for measuring the thermal diffusivity of the pulp and the exter-

nal heat transfer coefficient. The model is based on a solution in Fourier series for the

conduction of heat in spheres with an inner concentric, insulating spherical core, as a model

of conduction of heat in stone fruits.

© 2017 Elsevier Ltd and IIR. All rights reserved.
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1. Introduction

In postharvest processing of plant foods, rapid cooling is gen-
erally necessary to extend their shelf life and reduce losses
(Erdoğdu et al., 2014). In the design of this processing there are
basic control parameters that are necessary to predict accurately,
such as the cooling time needed to reach a certain temperature

at the thermal center of the product, the average temperature
of the product at a given time, the amount of heat to be extracted
to reach that temperature, etc. In most cases, the calculation
of these parameters is based on the first approximation to the
general Fourier series solution for regular geometries in homo-
geneous isotropic bodies, which usually does not explicitly
include the stone. In addition, the indirect measurements of
thermal diffusivity and the external heat transfer coefficient are
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also based on these approximations (Awuah et al., 1995; Erdoğdu,
2005, 2008). Therefore, it would be useful to have appropriate
mathematical models that explicitly include the stone, to allow
accurate prediction of the design parameters mentioned above,
and to measure the thermal diffusivity and the film coefficient.

In fact, among the analytical solutions to these problems
in solids with elementary geometries there is a considerable
body of literature on approximation models. Since the first
published results in the 1960s (Gac, 1963; Pflug et al., 1965; Smith
et al., 1967), these models have been based on a linear approx-
imation of the cooling kinetics (on a semi-logarithmic scale),
valid from a given time onwards.The main applications of ana-
lytical approximations of this kind are: estimation of cooling/
heating times, indirect measurement of the surface heat transfer
coefficient h when the thermophysical parameters are known,
and measurement of thermal parameters if h is known. In
general, these approximation equations are valid for solids
with elementary shapes (Becker and Fricke, 2002; Erdoğdu, 2005,
2008; Kondjoyan, 2006). These approximate equations were
extended to ellipsoidal or even irregular geometries in some
works (Cleland and Earle, 1982; Cuesta et al., 1990; Cuesta

and Lamúa, 1995, 2002; Lin et al., 1996a, 1996b, 2000; Smith et al.,
1967; Yilmaz, 1995 (and the Letter to the Editor – about this last
paper – published by Van Beek and Meffert, 1997).

In stone fruits, the theoretical thermal problems are different
from those of solid products. In fact, stone fruits, such as olives,
cherries, plums, and so forth, have approximately spherical or
ellipsoid geometries, but inside they contain a ligneous core – the
seed – whose physical and thermophysical parameters are radi-
cally different from those of the edible part, the pulp. Moreover,
the contact surface between this seed and the pulp is, in practice,
the deepest point that can be reached in the fruit and it per-
forms the role of a “thermal center” which in homogeneous solid
objects is represented by the geometric center. According to
Cinquanta et al. (2002) and Di Matteo et al. (2000, 2002, 2003),
the theoretical solution is easy to deduce, following the meth-
odology described by Carslaw and Jaeger (1959), to which should
be added the works by Ruiz-López et al. (2004, 2007), which pro-
posed analytical solutions for food drying kinetics, or the work
by Helal (2012), who proposed an integral transform method for
nonlinear heat-conduction problems in multilayered spheri-
cal media. Apart from these analytical works, we must resort

Nomenclature

An series expansion constants
An series expansion constants

(mass average)
a radius of the stone [m]
Bi = h∙R/k Biot number
c specific heat capacity [Wkg K− −1 1]
Fo t R= ⋅α 2 Fourier number
FoY Fourier number required to reach a

dimensionless temperature Y
h surface heat transfer coefficient

[Wm K− −2 1 ]
k thermal conductivity [Wm K− −1 1 ]
m intermediate variable appearing

in Eq. (39)

M nn = −( )[ ]1 2 2π constants appearing in Appendix C,
Eq. (C-4) (dimensionless)

Q t( ) total energy extracted up to the
moment t

�Q heat flow transferred through the
surface at the moment t

R radius of the body [m]
r radius from the center of the

fruit [m]
S surface [m2]
S in Eq. (22): absolute slope of the

linear portion in semi-logarithmic
scale [s−1]

t time [s]
T temperature [°C]
Tex temperature of the medium [°C]
ΔT0 T Tex0 −( )
V volume [m3]
x = r/R dimensionless distance from the

center

xa = a/R dimensionless distance of the
stone–pulp contact surface

Y T T T Tex ex= −( ) ( )−0 dimensionless ratio of temperature
difference

Y T T T Tex ex= −( ) ( )−0 dimensionless ratio of mass
average temperature difference

Greek letters
α ρ= ⋅( )k c thermal diffusivity [m s2 1− ]

δ 2 (minus) slope of the linear portion
on semi-logarithmic scale
(dimensionless)

δn
2 solutions to the transcendental

equation of boundary condition
(dimensionless)

δ δn Max n, = for Bi→∞ (dimensionless)
ρ density [kg m−3 ]
ψ ψ δ= ( )nx spatial component of the solution

in Fourier series expansion

Subscripts
0 value when t = 0
1 first term in infinite series
a value on the stone–pulp contact

surface
exp experimental
Max maximum value that can be

achieved
min minimum value that can be

achieved
n index in infinite series
sf value at r = R
∞ for Bi→∞
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