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A B S T R A C T

The natural frequencies of acoustic–structure systems can be approximated by a closed-form
expression that accounts for the interaction between two uncoupled component modes: a given
structural mode and the acoustic mode with which it couples most strongly. This expression
requires spatial integration of the component mode shapes. In practice, the effort to determine
the component mode shapes and compute the necessary integrals negates the simplicity afforded
by the closed-form expression. Here, with the use of coupled mode theory, a new nondimen-
sional expression for the coupled natural frequencies is derived. The derivation includes the
definition of a new dimensionless number that quantifies the natural propensity of two
component modes to couple, irrespective of the enclosure size or the fluid and structural
properties. Values of this dimensionless number are presented for common geometries and
boundary conditions. With these values, approximations of the coupled natural frequencies can
be calculated by hand without explicit knowledge of the component mode shapes or their spatial
integrals. The accuracy of these hand calculations is shown for two common acoustic–structure
systems: a plate coupled to a rectangular air-filled enclosure and a cylindrical shell containing
water.

1. Introduction

Acoustic–structure interaction refers to the dynamic interplay between acoustic pressure fields and flexible structures. Given the
ubiquity of acoustic media and their inevitable contact with natural or man-made structures, it is not surprising that acoustic–
structure interaction is relevant to the dynamic analysis of many physical systems. When air is the fluid of interest, it is often
convenient and accurate to solve the acoustic and structural problems independently (i.e., neglecting any mutual influence between
the acoustic fluid and the structure). This strategy involves formulating the acoustic problem under the assumption that any adjacent
structure is perfectly rigid. The corresponding structural dynamic problem is then solved by treating the structure as though it were
in a vacuum.

While classical acoustic and vibration analysis treats the acoustic and structural problems independently, there are a host of
common scenarios in which this strategy is not appropriate. Such cases arise when the fluid of interest is dense or when the structure
is highly flexible. In these situations, the fluid and the structure influence each other in a non-negligible manner, and it may be
necessary to solve the acoustic and structure problems simultaneously. Excellent introductions to problems of this nature can be
found in the texts of Junger and Feit (1993) and Fahy (1985). Classes of problems that may require an acoustic–structure interaction
approach are numerous; here, the focus is on the dynamics of structures in contact with an enclosed acoustic fluid, referred to here
as acoustoelasticity (Dowell et al., 1977; Dowell and Tang, 2003). (This is not to be confused with the acoustoelastic effect, a term
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used to describe changes in wave velocity in elastic structures due to static stress fields.)
Many existing acoustoelasticity studies present a theoretical framework followed by results corresponding to systems with

specific geometry, material, and fluid characteristics. While it is possible to draw upon these studies to make qualitative observations
on the nature of acoustoelastic coupling, their results are generally not suitable for direct or broad application. These studies can be
used to implement a numerical algorithm that solves a particular problem of interest, but such an effort may not be efficient for the
practicing engineer attempting to perform a preliminary design or troubleshoot a failing component. In these time-critical situations,
it may be similarly impractical to employ discretization techniques. While the ability of commercial finite element software to model
acoustoelasticity problems has advanced considerably, setting up and verifying a working model is not trivial. Further, the acoustic–
structure coupling inherent to these problems typically requires the solution of unsymmetric eigenvalue problems, which can be
computationally expensive for models with a moderate or high number of degrees of freedom.

Given these difficulties, there is a need for approximate techniques that can be used to quickly assess the extent to which a
structure couples to an adjacent acoustic cavity. Here, a theoretical framework to make these assessments is presented. The
approach begins by modifying the acoustoelastic equations of motion to consider two component modes: a single structural mode of
interest and the acoustic mode with which it couples most strongly. The modified equations of motion lead to a closed-form
expression that can be used to approximate coupled natural frequencies. This expression, which has been reported elsewhere (Fahy,
1985), can be cumbersome to implement because it requires spatial integration of the component mode shapes. By writing the model
equations in their so-called coupled mode form (Louisell, 1960), and invoking an approximation known as the weak coupling
assumption, a new approximate acoustoelastic natural frequency expression can be derived. This expression can then be cast in a
simple nondimensional form that provides insight into the fundamental nature of acoustic–structure coupling. The nondimensional
expression includes the definition of a new dimensionless number quantifying the natural propensity of a structural mode to couple
with a given acoustic mode, irrespective of cavity size, fluid properties, or structural properties. Values of this dimensionless number
are calculated for common geometries and boundary conditions. With these values, approximations of the acoustoelastic natural
frequencies can be calculated by hand without the need to compute integrals. This approach is attractive to practitioners wishing to
quickly determine the importance of acoustic–structure interaction before implementing a more rigorous analysis. The presented
approach can also be used to perform parametric studies or design optimization analyses that are too computationally expensive via
any other method. Another advantage of the approach is the physical insight it affords the analyst, thus providing a means by which
to perform physics-based checks on complex models.

The remainder of this paper is organized as follows: Section 2 discusses relevant previous work in the areas of acoustoelasticity
and coupled mode theory. Section 3 derives two approximate closed-form expressions for the coupled natural frequencies of an

Nomenclature

AF area of fluid–structure interface
a0 radius of shell from origin to middle surface
aj acoustic modal coordinate
c0 acoustic speed of sound
D1,2, D*1,2 modal coordinates in coupled mode form
E Young's modulus
d0,1,2 coefficients of shell characteristic equation
Fj acoustic normal mode
g system equation coefficients in coupled mode form
Gk structural normal mode
H height of rectangular enclosure
h thickness of plate
Jna

nath-order Bessel function
kn pa a

roots of characteristic equation for rigid annular
cavity

L length of rectangular enclosure
Ljk coupling coefficient
ℓ cylindrical shell length
Mj, Mk acoustic, structural modal normalization factor
ma, na, pa acoustic wavenumber indices
ms, ns structural wavenumber indices
qk structural modal coordinate
Ri inner radius of cylindrical shell or annulus
Ro outer radius of annulus
r, θ, z cylindrical coordinates
t time
u, v axial, circumferential displacement of cylindrical

shell
V volume of fluid cavity
W width of rectangular enclosure
w displacement of structure in normal direction
x, y, z Cartesian coordinates
Yna

nath-order Neumann function
α scaling parameter
αn pa a

roots of characteristic equation for rigid cylindri-
cal duct

βjk coupling strength parameter
Γ radial variation of rigid wall acoustic mode in an

annulus
Δ dimensionless component frequency separation
δna

= 1 if na = 0, = 0 otherwise
ηjk energy transfer factor
ϵ = 1 if subscript= 0, = 2 otherwise
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κ1,2 dimensionless separation between coupled and
uncoupled natural frequencies

ϕ fluid velocity potential
Ψ dimensionless coupling parameter
ρ, ρs density of structure per unit volume, per unit area
ρ0 density of fluid per unit volume
ν Poisson's ratio
Ω cylindrical shell frequency parameter
ωc1,2

coupled natural frequencies
ωj, ωk uncoupled natural frequency of cavity, structure
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