Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Ti–phenyl nanoparticles encapsulated in mesoporous silica as active and selective catalyst for the oxidation of alkenes

Syamsi Aini ^{a,b}, Jon Efendi ^{a,b}, Hendrik Oktendy Lintang ^a, Sheela Chandren ^a, Hadi Nur ^{a,*}

^a Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia UTM, 81310 Skudai, Johor, Malaysia

^b Department of Chemistry, Universitas Negeri Padang, Jln. Prof. Dr. Hamka, Air Tawar, Padang 25131, West Sumatera, Indonesia

ARTICLE INFO

Article history: Received 29 October 2013 Received in revised form 7 December 2013 Accepted 9 December 2013 Available online 18 December 2013

Keywords: Ti-phenyl nanoparticles Mesoporous silica Oxidation of styrene Aqueous H₂O₂

ABSTRACT

Ti-phenyl nanoparticles encapsulated in mesoporous silica (Ti-phenyl@SiO₂) were synthesized and used as catalysts in the oxidation of styrene by aqueous H_2O_2 . The Ti-phenyl@SiO₂(2) with Si/Ti mol ratio of two exhibited the best catalytic performance for the oxidation of styrene with 92% conversion and 99% selectivity towards benzaldehyde. This superior catalytic activity shown Ti-phenyl@SiO₂ catalyst was attributed to the presence of phenyl-group and SiO₂ on Ti and the ease in accessibility to the active sites by the porous SiO₂.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Metal nanoparticles have grown to be increasingly popular in catalysis. The main advantage of metal nanoparticles in catalysis is their large surface area and high efficiency under mild condition, when compared with micro or macro catalysts [1,2]. It has been shown that the catalytic activity and selectivity of metal nanoparticles are strongly dependent upon their size, substrate and active metals sites [3,4].

For catalytic applications, hydrophobic substrates can only be strongly adsorbed on hydrophobic surfaces of the catalysts. The hydrophobic moiety on the metal can be improved by modification with organic moieties through covalent bonding to the active sites on metals (M–C). These organic groups are also useful to prevent agglomeration of the metal nanoparticles [5]. However, metals nanoparticles are less stable in solutions [6]. To overcome this problem, encapsulation of metal nanoparticles in oxides such as, silica (SiO₂), alumina (Al₂O₃) and zirconium oxide (ZrO₂) has been carried out [7]. Silica is a good adsorbent and catalyst support due to its hydrophilicity and the ease of accessibility by organic substrates through the pores of SiO₂ [8]. Therefore, the synthesis of Ti–phenyl encapsulated by mesoporous SiO₂ shell could be an ideal catalyst to oxidize alkenes [9]. Here, the activity of Ti–phenyl nanoparticles encapsulated in mesoporous silica was evaluated in the oxidation of different alkenes, namely 1-octene, 1-dodecene and styrene by aqueous H_2O_2 in order to prove the selectivity of the SiO₂'s pores. The catalytic activity and selectivity of Ti-phenyl@SiO₂ catalysts in the oxidation alkenes were compared to those of commercial TiO₂.

2. Experimental

2.1. Preparation of Ti-phenyl and Ti-phenyl@SiO₂

Ti-phenyl nanoparticles encapsulated in mesoporous SiO₂ were synthesized in three steps by following the original procedure reported [10,13], with some minor modifications. Typically, aniline (50 mmol) was dissolved in ice cold 50% fluoroboric acid (20 ml) and then the solution was placed in an ice bath with stirring for 30 min. Then, a cold solution of sodium nitride (50 mmol) was added to deionized water (10 ml). The solution was then allowed to stir for 1 h. The prepared phenyldiazonium fluoroborate was washed with cold ethanol. For the second step, phenyldiazonium fluoroborate (5 mmol) was dispersed in tetrahydrofurane (20 ml). After 1 h of vigorous stirring, 2.5 mmol of TiCl₄ was added directly into phenyldiazonium suspension. Typically, the reduction of TiCl₄ (5 mmol) and phenyldiazonium fluoroborate (10 mmol) with sodiumborohydride (12 mmol) was done to produce titanium-phenyl nanoparticles (Ti-phenyl), followed by coating of the Ti-phenyl using 5 to 20 mmol of tetraethyl orthosilicate (TEOS Fluka). The Ti-phenyl@SiO₂ formed has Si/Ti mol ratio of 1 to 4, and labeled as Ti-phenyl@SiO₂(x), where x corresponds to the Si/Ti mol ratio. The amount of Ti was constant for all of the samples.

^{*} Corresponding author. Tel.: +60 7 5536162; fax: +60 7 5536080. *E-mail address:* hadi@kimia.fs.utm.my (H. Nur). URL: http://www.hadinur.com (H. Nur).

^{1566-7367/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.catcom.2013.12.012

2.2. Characterization of catalysts

The structure of Ti–phenyl was confirmed by means of ¹³C and ¹H nuclear magnetic resonance (NMR) measurements. Liquid ¹³C and ¹H NMR experiments were carried using Bruker Avance 300 MHz spectrometer. The ¹³C of Ti–phenyl and ¹H of Ti–phenyl spectra were analyzed with numbers of scan of 512 and 32, respectively. The lattice fringes, core particles size, and the existence of the SiO₂ shell of Ti–phenyl and Ti–phenyl@SiO₂ were characterized using a Philips CM200/FEG high resolution transmission electron microscope (HRTEM), with acceleration voltage of 200 kV. The pore size distribution and the surface areas of Ti–phenyl@SiO₂ formed were determined by nitrogen (N₂) sorption analysis utilizing the BET method with a Quantachrome instrument.

2.3. Catalytic testing

The catalytic activity of the Ti–phenyl@SiO₂ being made was carried out in the oxidation of styrene with 30% H_2O_2 as an oxidant. The reactions were carried out with mixtures containing styrene (5 mmol), H_2O_2 (8 mmol), 50 mg of catalysts and acetonitrile (3.61 ml) in a spherical flask attached to a condenser at 80 °C with stirring for 24 h. The products from the reactions were separated by centrifugation and analyzed by gas chromatography (GC) Shidmazu GC-2014 equipped with BPX-5 column, with length of 30 m, inner diameter of 0.25 mm, film thicknesses of 0.25 μ m and a flame ionization detector (FID).

3. Results and discussion

3.1. Characteristics of Ti-phenyl and Ti-phenyl@SiO₂

The formation of phenyldiazonium and Ti–phenyl bonding were characterized by ¹³C and ¹H nuclear magnetic resonance (NMR). Fig. 1

shows the ¹³C NMR spectra of aniline, phenyldiazonium and Ti–phenyl. From Fig. 1a, it can be seen that five phenyl carbons of aniline can be clearly identified at 146.42, 129.13, 118.60 and 114.74 ppm. The four phenyl carbon peaks of phenyldiazonium also appeared at 155.44, 130.03, 120.70 and 115.44 ppm (Fig. 1b). Peak broadening and chemical shifting of carbon most adjacent to nitrogen can be seen at chemical shift of 146.42 to 155.44 ppm in the ¹³C NMR of aniline (Fig. 1a) and phenyldiazonium (Fig. 1b). This might be due to the effect of substituent N≡N bonding to phenyl. For the ¹³C NMR spectrum of Ti–phenyl nanoparticles shown in Fig. 1c, three types of phenyl carbon can be identified at chemical shift of 162.33, 161.17 and 103.74 ppm. Chemical shifts and broadening occurred for all the carbon of Ti–phenyl, which is caused by heteronuclear interaction of the bonding between Ti and phenyl. This is the results of fast spin–spin relaxation of carbon close to a metal core [11].

Fig. 2 shows the ¹H NMR spectra of aniline, phenyldiazonium tetrafluoroborate, and Ti–phenyl. In the Fig. 2a, the existence of five phenyl protons can be proven by the peaks at 6.8 (3H) and 7.2 (2H) ppm, and one of amine proton is at 6.8 ppm huddle with the phenyl proton peaks. As shown in Fig. 2b, for phenyldiazonium tetrafluoroborate, the five phenyl protons peaks have been broadening and shifting due to the N≡N functional group lying closer to titanium nanoparticles. Five of these peaks can be identified at 6.9, 7.3 7.9, 8.3 and 8.6 ppm; the same case for ¹H NMR spectra of Ti–phenyl. The fact that there are no sharp peaks identified in the range 6.8–8.6 for ¹H NMR spectra indicates that there is a bond between phenyl with titanium nanoparticles, and the absence of any excessive free phenyl. The additional peak at 3.7 and 1.7 ppm was identified for existence of THF solvent residuals. Based on the ¹³C NMR, and ¹H NMR spectra results, it can be concluded that Ti– phenyl were successfully synthesized, with no excessive diazonium [12].

The existence of titanium metal nanoparticles on the resulting Ti–phenyl and Ti–phenyl@SiO₂ is clearly shown in the TEM image in

Fig. 1. ¹³C NMR spectra of (a) aniline, (b) phenyl diazonium and (c) Ti-phenyl.

Download English Version:

https://daneshyari.com/en/article/50175

Download Persian Version:

https://daneshyari.com/article/50175

Daneshyari.com