Accepted Manuscript

Title: Adaption of a CARREAU fluid law formulation for residual stress determination in rotary friction welds

Author: Christoph Rößler David Schmicker Konstantin

Naumenko Elmar Woschke

PII: S0924-0136(17)30467-3

DOI: https://doi.org/doi:10.1016/j.jmatprotec.2017.10.018

Reference: PROTEC 15438

To appear in: Journal of Materials Processing Technology

Received date: 12-4-2017 Revised date: 7-9-2017 Accepted date: 11-10-2017

Please cite this article as: Christoph R*ddoto*ssler, David Schmicker, Konstantin Naumenko, Elmar Woschke, Adaption of a <ce:small-caps>Carreau</ce:small-caps> fluid law formulation for residual stress determination in rotary friction welds, <![CDATA[Journal of Materials Processing Tech.]]> (2017), https://doi.org/10.1016/j.jmatprotec.2017.10.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Adaption of a Carreau fluid law formulation for residual stress determination in rotary friction welds

Christoph Rößler^{a,*}, David Schmicker^a, Konstantin Naumenko^a, Elmar Woschke^a

^a Institute of Mechanics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract

For the numerical simulation of the rotary friction welding process in prior works a modified Carreau fluid law has been successfully adopted, which can so far not be used for the residual stress prediction due to the basic assumptions in this model. Therefore, an extension is proposed accounting for elastic effects, thermal induced stresses and hardening of steels using the data of continuous cooling transformation (CCT) phase diagrams. For the validation of the model, measurements from literature as well as own measurements utilizing partial cut-outs are used. The numerical results correlate well with experimental data for first order residual stresses. Keywords: rotary friction welding, residual stresses, material modeling, hardening, structural simulation

1. Introduction

Rotary friction welding allows joining of two or more parts by the use of frictional heat and pressure. Therefore, one part is set in rotary motion and is axially pressed against a second part. In case of direct drive rotary friction

Email addresses: christoph.roessler@ovgu.de (Christoph Rößler),
david.schmicker@ovgu.de (David Schmicker), konstantin.naumenko@ovgu.de (Konstantin
Naumenko), elmar.woschke@ovgu.de (Elmar Woschke)

Preprint submitted to Elsevier

October 13, 2017

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/5017609

Download Persian Version:

https://daneshyari.com/article/5017609

<u>Daneshyari.com</u>