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A B S T R A C T

Stability control of production is an important aspect of injection molding. However, challenges continue to exist
with respect to improving product quality stability to achieve a faster forming speed and a higher automation for
injection molding because the injection process is usually disturbed by several inevitable variations. The diffi-
culty in overcoming the fore-mentioned inevitable disturbances and achieving dynamic control of product
quality is related to establishing a quantitative relationship between product quality and process variables. In
this study, a quality prediction model based on polymer melt properties is established to monitor product weight
variation online. A pressure integral (PI) based on the prediction model is proposed as an effective process
variable to predict product weight variation. Additionally, a dynamic control method is proposed to improve
product quality stability. The experimental results indicate that PI presents advantages of consistency and sta-
bility in monitoring product weight variation when compared with models proposed by extant studies. The
proposed control method results in a decrease in product weight variation from 0.16% to 0.02% in the case of
varying mold temperature and the number of cycles to return stability decreases from 11 to 5 in with respect to
variations in the melt temperature.

1. Introduction

Injection molding is an extremely important method in producing
plastic products in manufacturing industries, and it possesses several
advantages including short molding periods, high dimensional preci-
sion, and easy realization of automation. However, challenges persist in
increasing product quality stability to achieve a faster forming speed
and a higher automation for injection molding because an injection
process is typically disturbed by various inevitable variations such as
polymer melt properties, machine operations, and mold temperature.
Several studies focus on disturbances to product quality stability in-
cluding non-uniform melt properties because of variations in back
pressure and screw rotation speed in the plasticizing stage (Tanoue
et al., 2006) and mold temperature variation because of variations in
the time taken by a manual or robot picker (Kurt et al., 2009). There-
fore, stability control of product quality is a critical issue in injection
molding.

In the last decade, various statistical methods were developed to
monitor quality stability in injection molding. The fore-mentioned
statistical methods do not require prior process knowledge, supervise
all variables of whole control trajectories, and monitor abnormal si-
tuations (Kazmer et al., 2008). For example, (Lu and Gao, 2005)

proposed a process analysis and quality prediction scheme based on a
stage-based partial least square model, and (Wang et al., 2012) pro-
posed a phase separation method based on multiway principle com-
ponent analysis for monitoring the injection molding process. Zhang
et al. (2015) proposed a statistical quality monitoring method to au-
tomatically extract statistical variables, and results indicated that the
extracted variables were significant and representative with respect to
product quality. Although the above methods were effective in process
monitoring and rapid detection of an abnormal situation, they are in-
effective in dynamically controlling product quality because of the lack
of a quantitative relationship between product quality and process
variables in the statistical methods.

Difficulty in overcoming the fore-mentioned inevitable disturbances
and achieving dynamic control of product quality involves establishing
a quantitative relationship between product quality and process vari-
ables. Process variables in injection molding involve large time-delays,
time-variations, nonlinearity, and are multivariable, and thus a math-
ematical approximation algorithms are considered the most appropriate
method to establish the aforementioned relationship. A basic approach
involves collecting the sample data of the monitored process variables
and product quality and subsequently fitting the approximate re-
lationship through an appropriate mathematical approximation
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algorithm. Common mathematical approximation algorithms include
Artificial Neural Networks (ANNs), Partial Least Squares Regression
(PLS), Support Vector Regression (SVR), and Gaussian Process (GP). For
example, (Chen et al., 2014) employed ANNs to construct a quality
predictor between warpage and process variables. Zhao et al. (2008)
developed a quality prediction method based on a PLS regression model
with a simpler structure by using phase specific average process tra-
jectory. Gao et al. (2014) developed a data-driven model based on SVR
to quantify the relationship between quality characteristics and sensor
data. Xia et al. (2011) proposed an optimization approach based on a
GP surrogate model to determine process parameters and improve
quality control for injection molding. An advantage of a mathematical
approximation algorithm is that it possesses wide applicability and is
suitable for almost any quantifiable quality prediction. Its disadvantage
is that several samples are required to fit the approximate relationship.
Therefore, this method is generally applicable in the optimization of
process parameters and is not suitable for dynamic process control.

Conversely, a few studies demonstrated that product quality is
characterized by injected polymer melt properties and flow states al-
though the complexity of the injection molding makes it difficult to
directly establish quantitative relationships between product quality
and process variables (Chen and Turng, 2005). For example, (Wang,
2012) proposed a PVT diagram of a polymer melt describing the spe-
cific volume change with respect to melt temperature and pressure as
the foundation for constant quality with the same degree of orientation,
residual stresses, and shrinkage. Chen and Gao (2006) recommended
that a uniform melt front velocity throughout the filling of a mold
cavity can minimize non-uniformity of the molded parts. Additionally,
various sensor technologies were applied to measure polymer melt
properties and the flow state within an injection molding process. For
example, (Wang et al., 2009) developed an online testing PVT equip-
ment based on cavity pressure and temperature sensors to realize melt
pressure and temperature measurement in real time. Wong et al. (2008)
employed a capacitive transducer to detect start/end of mold filling and
subsequently controlled velocity-to-pressure switchover. Gao et al.
(2014) established an online product quality monitoring system
through in-process measurement. Nguyen Thi et al. (2015) measured
fiber orientation distribution in injection-molded parts by using X-ray
computed tomography. The development of sensor technology can lead
to the feasibility of dynamically controlling product quality by ad-
justing appropriate control variables based on the online monitoring of
polymer melt properties and the flow state.

This study focuses on a dynamic control method of quality stability
for injection molding based on the online monitoring of variation in
melt properties. A quality prediction model based on polymer melt
properties is established to monitor product weight variation online,
and a dynamic control method is proposed to improve product quality
stability.

2. Quality prediction model and control method

2.1. Representation of stability

The concept of product quality is ambiguous and there are several
product quality definitions that can be classified into the following
three categories: (a) dimensional properties (for e.g., weight, length,
and thickness), (b) surface properties represented by the appearance of
surface defects (for e.g., sink marks and jetting), and (c) mechanical or
optical properties (for e.g., tensile and impact strength). Yang and Gao
(2006) claimed that the performance of a manufacturing process and its
quality control are monitored through product weight because quality
is inversely proportional to variability and this is reflected in the pro-
duct weight variation while product weight is closely related to other
quality properties. For example, (Harry, 1991) suggested that a strong
linear correlation exists between product length and weight, and (Min,
2003) indicated a strong correlation between product shrinkage and

weight. Therefore, product weight is a good indicator of process sta-
bility.

2.2. Quality variation analysis

In injection molding, a plasticized polymer melt is first injected into
a closed mold cavity and is subsequently held to compensate for
polymer shrinkage. This is followed by cooling it down to obtain the
desired product. The volume of the mold cavity is constant, and thus the
product weight changes with variations in melt specific volume. Fig. 1
shows a PVT diagram of polypropylene obtained from the Moldflow
material database, and this demonstrates the relationship between melt
specific volume with respect to temperature and pressure. For example,
a decrease in temperature from 225 °C to 200 °C decreases specific
volume to approximately 0.025 cm3/g. Similarly, pressure increases
from 0.1 MPa to 50 MPa, and this decreases the specific volume to
approximately 0.7 cm3/g.

The causes of the variation in melt specific volume can be classified
into the following three categories: (a) Initial melt pressure that is po-
tentially influenced by inconsistent material supply such as incomplete
drying or material from different production batches. (b) Initial melt
temperature that is potentially influenced by barrel heating and shear
heat due to screw rotation. (c) Flow resistance that is potentially in-
fluenced by the mold temperature due to inconsistent cycle time and
causes different melt compression while filling the cavity.

The control of melt specific volume consists of an injection stage
and a holding stage. A melt is injected and compressed to fill a closed
mold cavity during the injection stage and is then held to compensate
for the polymer shrinkage during holding stage. The injection stage is
simplified as an isothermal process for it is reasonable to ignore the
variation in melt temperature (Michaeli and Schreiber, 2009) because
the injection time is short (usually less than 2 s) and the thermal con-
ductivity of the polymer melt is poor (less than 1% that of metal). Based
on this simplification, the melt specific volume is mainly affected by the
melt pressure during the injection stage. Fig. 2 illustrates the polymer
melt extruded in the chamber during the injection process by the
driving force from screw movement, and this results in a variation in
melt pressure. The melt pressure profile in the chamber is divided into
three sections corresponding to the three sub-stages of the injection
stage, namely (a) initial filling, (b) stable filling, and (c) melt com-
pression. With respect to the initial filling, the melt pressure depends on
the resistance of the melt flowing through the runner. Generally, a
higher initial melt pressure or a lower initial melt temperature increases
melt viscosity and requires a higher melt pressure to overcome re-
sistance through the runner. With respect to the stable filling, the melt
pressure depends on the flow resistance of the melt filling the cavity.
For example, a higher mold temperature increases melt flowability and

Fig. 1. A PVT diagram of polypropylene (PP-1215C) obtained from the Moldflow ma-
terial database.
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