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a  b  s  t  r  a  c  t

The  double-ellipsoidal  heat  power  density  model  proposed  by Goldak,  has  been  widely used  as  the  basis
for  modelling  heat  transfer  in  arc  welding  operations  for more  than  thirty  years.  This  approach  has
proved  to  be  extremely  effective  for a wide  range  of  arc welding  operations.  However,  the  application
of  a  double-ellipsoidal  heat  power  density  distribution  is less  appropriate  for keyhole-laser  or  electron-
beam  welding  operations,  or in  situations  where  arc welding  takes  place  within  deep narrow  grooves.
In  this  paper  the double-ellipsoidal  distribution  is extended  to a  double-ellipsoidal-conical  heat  power
density  model  in  order  to accurately  describe  transient  temperature  fields  for  a  wider  range  of  geometries
and  welding  processes.  The  new  extended  model  was  validated  through  comparing  predicted  welding
thermal  cycles  with  those  measured  for  a single  pass  electron  beam  weld,  as  well as  those  measured
in  a multi-pass  narrow  groove  gas-tungsten-arc  weld.  In both  cases,  excellent  agreement  was  obtained
between  predicted  and  measured  thermal  transients.

©  2017  The  Author(s).  Published  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Fusion welding is the most common method for assembling
large metallic structures. Fusion welding involves the use of a con-
centrated heat source to bring about localised melting in order to
join components. This localised heating leads to the generation of
steep temperature gradients and rapid thermal transients, which
in turn lead to large variations in micro-structure and mechanical
properties, and to the generation of substantial levels of residual
stress.

In the case of safety-critical components, such as those that arise
in nuclear, power generation, offshore and in related sectors, it is
critical that residual stresses are quantified with a high level of
confidence. In order for a residual stress prediction to be made,
an accurate thermal history must be obtained or predicted for the
component, as was discussed by Radaj (1992). Given that many
safety-critical components will have complex geometries and/or
processing histories, such quantification is often contingent on the
application of numerical models. Goldak et al. (1984) describe how
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the accuracy of numerical predictions for transient thermal fields
will in turn hinge on an accurate description of the welding heat
source.

Rosenthal (1941) first applied Fourier’s law to moving heat
sources, which were represented as either point, line or plane
sources of heat. This approach resulted in reasonable predictions
for transient temperature fields at some distance from the heat
source, but predictions were less accurate in the vicinity of the
fusion zone. Subsequent developments were proposed by other
researchers and these led to improved near-field predictions for
conventional arc welds. Pavelic et al. (1969) made improvements by
representing the welding arc as a distributed surface flux. In order
to account for the effects of arc pressure and weld pool depression
discussed by Friedman (1978), the heat source may  be represented
as a volumetric distribution.

An approach to representing welding heat sources, that was  first
proposed by Goldak et al. (1984), has been widely adopted by ana-
lysts over the past thirty years. Goldak and co-workers proposed a
non-axisymmetric heat source distributed in three dimensions in
order to better account for the depression of the weld pool surface
owing to the arc pressure. One representation that was presented
was based on a double-ellipsoidal heat power density distribution.
However, Goldak et al. (1985) also pointed out that arbitrary func-
tions can be utilised to define a distribution of heat flux on the
surface of a weld, or a power density distribution throughout the
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volume of a weld, and that these different functional distributions
may  be used with increasing or decreasing success depending on
the parity of the distribution with the physical reality of the welding
heat source. Goldak and co-workers stressed that if one has an exact
solution of the temperature-enthalpy field in the weld pool, then
one need only prescribe this solution to be a Dirichlet boundary
condition, and the associated flux and power density distribution
is the Lagrange multiplier that enforces this exact solution. Fur-
thermore, appropriate flux and power density distributions must
exist in cases where the temperature field solution exists. The only
caveat on the choice of distribution function is that the integral
must be unity. The approach proposed by Goldak has proved to
be extremely effective at describing the arc as a heat source in a
wide variety of applications, ranging from the case of an electric
arc impinging on a flat plate, but also for cases where the arc is
introduced to the base of a weld groove as described by both Bibby
et al. (1985) and Gery et al. (2005).

In the time since the Goldak model was first published, there has
been an increase in the application of narrow-groove arc welding
process variants, which generally involve the preparation of deep
and narrow weld grooves for welding thick sections of material.
This increase has been driven by the desire to reduce the vol-
umes of filler material that need to be deposited, thereby reducing
joint completion times. Similarly, the utilisation of keyhole weld-
ing techniques based on the laser and electron beam (EB) welding
processes has also increased. The mechanisms behind the keyhole
formation in electron beam welding and the instabilities that may
arise within the keyhole were reviewed by Sun and Karppi (1996).
It is evident that the nature of arc welding in a deep and narrow
groove, or keyhole welding with either an electron beam or a laser,
is a very different scenario to that of an electric arc impinging on
a flat plate. Thus, with the increasing utilisation of narrow-groove
and keyhole weld configurations in mind, the authors felt com-
pelled to examine the possibility of either extending an existing
approach to the representation of welding heat sources, or propos-
ing a new approach.

We  begin by describing a double-ellipsoidal-conical heat power
density model for welding heat sources; in which double-conical
and double-ellipsoidal heat power density distributions, of sim-
ilar form to those proposed by Bibby et al. (1985) and Goldak
et al. (1984) respectively, are mathematically combined to create a
power density distribution that is able to represent the heat source
in a wider range of welding processes than previous power density
distributions. We  then describe the application of this heat source
model to thermal analyses for the cases of a multipass narrow
groove arc weld in a 30 mm thick SA508 steel plate, and a key-
hole electron beam weld in a 30 mm thick SA508 steel plate. The
performance of the model is then assessed based on a comparison
of predicted thermal transients with those measured using ther-
mocouples attached to the weld test pieces. The performance of the
proposed model is also compared with the predictions arising from
the application of the Goldak heat source model, as implemented
with a double-ellipsoidal heat power density distribution.

2. Double-ellipsoidal conical heat source model

According to Fourier’s law, heat flow is related to the transient
temperature field in the domain. The temperature, T(x, y, z, t), as
a function of spatial co-ordinates, (x, y, z), and time, t, satisfies the
heat equation at every point in the domain as shown in Eq. (1).

�cp
∂T

∂t
− k∇2T = q (1)

where �, cp and k are the mass density, specific heat capacity at con-
stant pressure and the thermal conductivity respectively; q(x,y,z,t)
is the rate of internal heat generation which represents the heat

source or sink rate in the domain. Typically q(x,y,z,t) has been repre-
sented by a non-axisymmetric heat source as proposed by Goldak
et al. (1984), typically a double-ellipsoidal heat power density dis-
tribution, for the case of arc welding, and by a three dimensional
conical distribution for beam welding processes and plasma arc
welding.

The double-ellipsoidal heat source has been shown to accurately
represent the heat power density from an electric arc traversing
across the surface of a flat plate. However, in cases where the weld
configuration deviates significantly from an arc impinging on a flat
plate, this distribution should be modified in order to account for
heat transfer by convection and radiation to the walls of deep and
narrow grooves. In the gas-tungsten arc welding (GTAW) process,
for example, the gas shielding enables significant quantities of heat
to be transported to the walls of the groove by forced convection
and, as there is no fusible flux concealing the arc, by radiation trans-
fer.

Consider a gas-tungsten electric arc traversing across the surface
of a flat plate. For given welding conditions, there will be a dis-
tance, perpendicular to the welding line, over which the heat flux
will decay to a fraction (say 5%) of its peak value. If the same gas-
tungsten arc were now transposed to the base of a narrow groove
this distance would necessarily change, since some portion of the
arc energy would now be transferred directly to material located
above the base of the groove, through mechanisms such as radia-
tion and forced convection. Clearly such transfer would not occur in
the case of a flat plate as no material would be located to either side
of the electric arc. This heat decay as a function of distance from the
weld line must then be related to the geometry of the groove.

In the proposed model, below the base of the groove the power
density obeys the verified double-ellipsoidal distribution proposed
by Goldak and decreases to a given fraction of the peak power in a
Gaussian manner in three dimensions. Above the base of the groove,
the distance over which the power density decreases by a given
fraction is related to the bevel angle applicable to the wall of the
groove. Therefore, above the base of the groove, surfaces of constant
power density look like conical sections with different semi-major
axes fore and aft of the arc location. In contrast, below the base
of the groove, surfaces of constant power density lie on double-
ellipsoids with different semi-major axes fore and aft of the arc
location. These surfaces of constant power density are shown, for
cases of an arc and electron beam weld, in Fig. 1a and b respectively.

For an electron beam incident on a flat surface the heat flux
distribution is analogous to that of an arc at the base of a narrow
groove. The focusing of the electron beam results in a Gaussian
distribution of electron energies incident upon the domain sur-
face. These electrons rapidly transfer their kinetic energy to the
work-piece via scattering interactions, and toward the centre of the
beam the electron energies may  be sufficient to vaporise the base
material. The resulting vapour pressure can displace molten metal,
enabling subsequent electrons to travel further into the material.
Toward the periphery of the beam, electrons will tend to have lower
energies, and fewer collisions will be required in order for their
energy to be transferred to the work-piece. Therefore, as the beam
penetrates the domain, the effective radius of the Gaussian energy
distribution decreases as the kinetic energy of the electrons therein
is converted to thermal energy. There will also be some transfer
of energy from the beam axis toward the beam periphery and, as
such, the electron energies on the beam axis will gradually decay
with increasing depth of penetration. This gradual decay in electron
energies will determine the penetration depth since, at some point,
the electron energies will no longer be sufficient to cause vapori-
sation of the molten metal. At this position on the beam axis, the
heat ought to be deposited to the work-piece in a Gaussian manner
from the end point of the beam in the domain. Therefore, above this
position on the beam axis, surfaces of constant power density again
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