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a b s t r a c t 

We study the in-plane damped oscillations of a finite lattice of particles coupled by linear 

springs under distributed harmonic excitation. Strong nonlinearity in this system is gener- 

ated by geometric effects due to the in-plane stretching of the coupling spring elements. 

The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear 

normal modes – NNMs), and an equal number of axial linear modes which are nonlinearly 

coupled to the transverse ones. Nonlinear interactions between the transverse and axial 

modes under harmonic excitation give rise to unexpected and extreme nonlinear energy 

exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic 

forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due 

to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, 

we detect the stable response of the directly excited transverse NNM (despite its insta- 

bility in the absence of forcing), with simultaneous stability of the indirectly excited axial 

linear mode. Second, by changing the system and forcing parameters we report extreme 

nonlinear “energy explosions,” whereby, after an initial regime of stability, the directly ex- 

cited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial 

modes of the lattice, at all possible wave numbers. This strong instability is triggered by 

the parametric instability of an indirectly excited axial mode which builds energy until the 

explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we 

report intermittent, intense energy transfers from the directly excited transverse NNM to 

a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited 

axial mode to a small set of axial modes, but with larger wavelengths. These intermittent 

energy transfers resemble energy cascades occurring in turbulent flows. Our results show 

that nonlinear mechanical systems can support extreme energy transfer phenomena, with 

features resembling “mechanical turbulence”. 
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1. Introduction 

Energy transfer is a central problem in dynamical systems, and the main focus in many applications, ranging from vibra- 

tion isolation concerned with reducing the energy flux into a structure, and vibration absorption seeking to remove energy 

from a system, to energy harvesting aiming at transferring energy from the mechanical to the electrical domains within a 

system based on the balance between the energy distribution in the system and the rate at which this energy is harvested. 

A central feature of linear systems is that energy can be segregated in their linear normal modes, with no possibility of 

energy transfer between them. In contrast, while the response of nonlinear systems can be described in terms of the vibra- 

tion modes identified from a linearized analysis, these modes are no longer decoupled and nonlinearity allows for energy 

transfers between them. Moreover, under certain conditions ( Vakakis et al., 1996 ), nonlinear normal modes – NNMs can be 

defined for which energy is again segregated, allowing for an approximate description of the system dynamics in terms of 

isolated (non-resonant) nonlinear modes. NNMs were defined as synchronous standing waves of a nonlinear system, resem- 

bling the classical linear normal modes. Understanding and passively controlling how energy is transferred between coupled 

systems or NNMs, and across temporal or length scales within a system is central to the dynamical analysis and design of 

mechanical systems. 

Perhaps the most famous example involving intense nonlinear energy transfers are those occurring between modes/scales 

in turbulent fluid flows. From an energy transfer point of view turbulent flows have two very important properties: They 

are robust and almost impossible to suppress, and they dissipate large amounts of energy compared to laminar flows of 

the same energy. The reason is that in a typical turbulent flow energy is transferred through a nonlinear mechanism 

over a large number of modes (broadband spectrum) resulting in simultaneous dissipation over a large number of scales 

( Barenblatt, 1983 ). In turbulent systems with quadratic nonlinearities, the finite sizes of high-dimensional chaotic attractors 

are caused exclusively by the synergistic activity of persistent, linearly unstable directions and a nonlinear energy transfer 

mechanism in non-linearizable quadratic oscillators ( Sapsis, 2013; Sapsis and Majda, 2013 ). 

In mechanical systems intense energy transfer phenomena have been observed also in the form of targeted energy trans- 

fers from primary structures to strongly nonlinear attachments ( Vakakis et al., 2008 ). The dynamics and energy transfer 

phenomena in phononic lattices are reviewed by Hussein et al. (2014 ). Aubry (1997 ) and Flach and Gorbach (2008) reviewed 

energy transfer and focusing phenomena in nonlinear Hamiltonian lattices through propagating discrete breathers. Energy 

transfers in the form of traveling waves and breathers in neural networks are studied in Folias and Bressloff (2005 ), whereas 

Starosvetsky et al. (2012) and Hasan et al. (2013) studied strong energy exchanges and irreversible energy transfers in weakly 

coupled, strongly nonlinear one-dimensional granular chains mounted on elastic foundations. Zhang et al. (2015) demon- 

strated passive pulse redirection and nonlinear targeted energy transfer in weakly coupled granular networks under har- 

monic excitation. Smirnov et al. (2013 ) investigated the energy transfer exchange phenomenon in the finite nonlinear Fermi- 

Pasta-Ulam (FPU) lattice. It was found that resonant interactions between high-frequency nonlinear normal modes (NNMs) 

lead either to complete energy exchanges between different parts of a lattice, or to energy localization in a subset of the 

lattice. 

In this work we study the forced and damped in-plane oscillations of a nonlinear lattice composed of a finite number 

of particles coupled by linear springs and viscous dampers under harmonic excitation. This lattice was first introduced by 

Manevitch and Vakakis (2014) , and its strong geometric nonlinearity is generated by the stretching of the linear coupling 

springs during the in-plane particle oscillations. For fixed boundary conditions the lattice supports almost linear sound 

waves corresponding to predominantly axial oscillations of the particles, as well as strongly nonlinear waves correspond- 

ing to predominantly transverse oscillations of the particles. Moreover, in the low-energy limit this lattice behaves as a 

nonlinear sonic vacuum, i.e., a medium with zero speed of sound as defined in the context of classical acoustics. The com- 

plete absence of linear acoustics enables strongly nonlinear resonance interactions between standing transverse waves of 

the lattice (NNMs), as well as strongly nonlocal effects in the nonlinear acoustics. Other recent works reported nonstation- 

ary resonance effects in the unforced lattice, in the form of intense recurring energy exchanges between different parts 

of the lattice ( Koroleva and Manevitch, 2015; Koroleva et al., 2015 ), and accelerating oscillating fronts with localized en- 

velopes ( Gendelman et al., 2016 ). Moreover, in ( Zhang et al., 2016 ) interesting non-reciprocal effects in the dynamics and 

acoustics were studied, including energy exchanges from small-to-large length scales; wave interaction phenomena in the 

form of irreversible targeted energy transfers from axial linear waves to nonlinear transverse pulses; and complex energy 

cascading processes. Similar non-reciprocity phenomena have been observed even in conservative continuum models with 

non-uniformly distributed system parameters, in the form of unidirectional broadening of the corresponding vibration spec- 

trum ( Cousins and Sapsis, 2014 ). 

By harmonically forcing a single transverse NNM of the lattice and examining the ensuing intense energy transfer phe- 

nomena, we aim to show that unexpected and extreme energy transfers can be realized. These include “energy explosions”

and intermittent energy exchanges between the directly excited NNM and finite subsets of transverse and axial modes with 

larger or smaller wavelengths. The reason for these complex energy transfers is the strong geometric nonlinearity of the 

lattice, which leads to dynamical interactions between the directly excited transverse NNM and the other indirectly excited 

transverse and axial modes. Perhaps this is surprising given the relatively simple configuration of the lattice, but it can 

be explained by the sonic vacuum limit that this system reaches for low energies, and the strong nonlocality of the dy- 

namic interactions that occur when that limit is reached ( Manevitch and Vakakis, 2014 ). Both stationary and nonstationary 
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