
Mimir: Memory-Efficient and Scalable MapReduce
for Large Supercomputing Systems

Tao Gao,a,d Yanfei Guo,b Boyu Zhang,a Pietro Cicotti,c Yutong Lu,e,f,d

Pavan Balaji,b and Michela Taufera

aUniversity of Delaware
bArgonne National Laboratory

cSan Diego Supercomputer Center

dNational University of Defense Technology
eNational Supercomputing Center in Guangzhou

fSun Yat-sen University

Abstract—In this paper we present Mimir, a new implementa-
tion of MapReduce over MPI. Mimir inherits the core principles
of existing MapReduce frameworks, such as MR-MPI, while
redesigning the execution model to incorporate a number of
sophisticated optimization techniques that achieve similar or
better performance with significant reduction in the amount of
memory used. Consequently, Mimir allows significantly larger
problems to be executed in memory, achieving large performance
gains. We evaluate Mimir with three benchmarks on two high-
end platforms to demonstrate its superiority compared with that
of other frameworks.

Keywords: High-performance computing; Data analytics; MapRe-

duce; Memory efficiency; Performance and scalability

I. INTRODUCTION

With the growth of simulation and scientific data, data

analytics and data-intensive workloads have become an in-

tegral part of large-scale scientific computing. Analyzing and

understanding large volumes of data are becoming increasingly

important in various scientific computing domains, often as a

way to find anomalies in data, although other uses are being

actively investigated as well. Big data analytics has recently

grown into a popular catch-all phrase that encompasses vari-

ous analytics models, methods, and tools applicable to large

volumes of data. MapReduce is a programming paradigm

within this broad domain that—loosely speaking—describes

one methodology for analyzing such large volumes of data.

We note that big data analytics and MapReduce are not

inventions of the scientific computing community, although

several ad hoc tools with similar characteristics have existed

for several decades in this community. These are generally

considered borrowed concepts from the broader data analytics

community [10] that has also been responsible for developing

some of the most popular implementations of MapReduce,

such as Hadoop [27] and Spark [30]. While these tools provide

an excellent platform for analyzing various forms of data, the

hardware/software architectures that they target (i.e., generally

Linux-based workstation clusters) are often different from

that which scientific computing applications target (i.e., large

supercomputing facilities).

While commodity clusters and supercomputing platforms

might seem similar, they have subtle differences that are

important to understand. First, most large supercomputer in-

stallations do not provide on-node persistent storage (although

this situation might change with chip-integrated NVRAM).

Instead, storage is decoupled into a separate globally acces-

sible parallel file system. Second, network architectures on

many of the fastest machines in the world are proprietary.

Thus, commodity-network-oriented protocols, such as TCP/IP

or RDMA over Ethernet, do not work well (or work at all)

on many of these networks. Third, system software stacks on

these platforms, including the operating system and compu-

tational libraries, are specialized for scientific computing. For

example, supercomputers such as the IBM Blue Gene/Q [3]

use specialized lightweight operating systems that do not

provide the same capabilities as what a traditional operating

system such as Linux or Windows might.

Researchers have attempted to bridge the gap between

the broader data analytics tools and scientific computing

in a number of ways. These attempts can be divided into

four categories: (1) deployment of popular big data process-

ing frameworks on high-performance computers [24], [17],

[26], [9]; (2) extension to the MPI [5] interface to support

〈key, value〉 communication [16]; (3) building of MapReduce-

like libraries to support in situ data processing on supercom-

puting systems [25]; and (4) building of an implementation

of MapReduce on top of MPI [21]. Of these, MapReduce

implementations over MPI—particularly MR-MPI [21]—have

gained the most traction for two reasons: they provide C/C++

interfaces that are more convenient to integrate with scientific

applications compared with Java, Scala, or Python interfaces,

which are often unsupported on some large supercomputers;

and they do not require any extensions to the MPI interface.

MR-MPI has taken a significant first step in bridging the gap

between data analytics and scientific computing. It embodies

the core principles of MapReduce, including scalability to

large systems, in-memory processing where possible, and

spillover to the I/O subsystem for handling large datasets; and

it does so while allowing scientific applications to easily and

efficiently take advantage of the MapReduce paradigm [31],

[22]. Yet despite its success, the original MR-MPI implemen-

tation still suffers from several shortcomings. One shortcoming

is its inability to handle system faults: we addressed this

shortcoming in our previous work [12]. Another significant

shortcoming is its simple memory management. Specifically,

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.31

1098

MR-MPI uses a model based on fixed-size “pages”: MR-MPI

pages are static memory buffers that are allocated at the start

of each MapReduce phase and used throughout this phase. As

long as the application dataset can fit in these pages, the data

processing is in memory. But as soon as the application dataset

is larger than what fits in these pages, MR-MPI spills over the

data into the I/O subsystem. While this model is functionally

correct, it leads to a tremendous loss in performance.

Figure 1 illustrates this point with the WordCount bench-

mark on a single compute node of the Comet cluster at the San

Diego Supercomputing Center (cluster details are presented

in Section IV). We note that while MR-MPI provides the

necessary functionality for this computation, it experiences

significant slowdown in performance for datasets larger than 4

GB, even though the node itself contains 128 GB of memory.

Consequently, increasing the dataset size from 4 GB to 64

GB results in nearly three orders of magnitude degradation in

performance.

Fig. 1: Single-node execution time of WordCount with MR-MPI on
Comet.

The goal of the work presented here is to overcome such in-

efficiencies and design a memory-efficient MapReduce library

for supercomputing systems. To this end, we present a new

MapReduce implementation over MPI, called Mimir. Mimir

inherits the core principles of MR-MPI while redesigning

the execution model to incorporate a number of sophisticated

optimization techniques that significantly reduce the amount of

memory used. Our experiments demonstrate that for problem

sizes where MR-MPI can execute in memory, Mimir achieves

equal or better performance than does MR-MPI. At the same

time, Mimir allows users to run significantly larger problems in

memory, compared with MR-MPI, thus achieving significantly

better performance for such problems.

The rest of this paper is organized as follows. We provide

a brief background of MapReduce and MR-MPI in Section II.

In Section III, we introduce the design of Mimir and present

experimental results demonstrating its performance in Sec-

tion IV. Other research related to our paper is presented in

Section V. We finally draw our conclusions in Section VI.

map

map

aggregate

aggregate

convert

convert

reduce

input

output

output

input KVs

KVs

KMVs

KMVs

Exchange KVs

Fig. 2: The map, shuffle, and reduce phases in MR-MPI.

II. BACKGROUND

In this section, we provide a high-level overview of the

MapReduce programming model and the MR-MPI implemen-

tation of MapReduce.

A. MapReduce Programming Model

MapReduce is a programming model intended for data-

intensive applications [10] that has proved to be suitable for

a wide variety of applications. A MapReduce job usually

involves three phases: map, shuffle, and reduce. The map phase

processes the input data using a user-defined map callback

function and generates intermediate 〈key, value〉 (KV) pairs.

The shuffle phase performs an all-to-all communication that

distributes the intermediate KV pairs across all processes. In

this phase KV pairs with the same key are also merged and

stored in 〈key, 〈value1, value2...〉〉 (KMV) lists. The reduce
phase processes the KMV lists with a user-defined reduce

callback function and generates the final output. A global

barrier between each phase ensures correctness. The user needs

to implement the map and reduce callback functions, while

the MapReduce runtime handles the parallel job execution,

communication, and data movement.

Several successful implementations of the MapReduce

model exist, such as Hadoop [1] and Spark [30]. These

frameworks seek to provide a holistic solution that includes

the MapReduce engine, job scheduler, and distributed file

system. However, large supercomputing facilities usually have

their own job scheduler and parallel file system, thus making

deployment of these existing MapReduce frameworks in such

facilities impractical.

B. MapReduce-MPI (MR-MPI)

MR-MPI is a MapReduce implementation on top of MPI

that supports the logical map-shuffle-reduce workflow in four

phases: map, aggregate, convert, and reduce. The

map and reduce phases are implemented by using user call-

back functions. The aggregate and convert phases are

fully implemented within MR-MPI but need to be explicitly

invoked by the user. Figure 2 shows the workflow of MR-

MPI. The aggregate phase handles the all-to-all movement

of data between processes. Within the aggregate phase,

MR-MPI calculates the data and buffer sizes and exchanges

the intermediate KV pairs using MPI_Alltoallv. After the

exchange, the convert phase merges all received KV pairs

based on their keys.

Similar to traditional MapReduce frameworks, MR-MPI

uses a global barrier to synchronize at the end of each phase.

1099

Download English Version:

https://daneshyari.com/en/article/5018139

Download Persian Version:

https://daneshyari.com/article/5018139

Daneshyari.com

https://daneshyari.com/en/article/5018139
https://daneshyari.com/article/5018139
https://daneshyari.com

