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Abstract

We derive the atomistic representations of the elastic tensors appearing in the linearized theory of first strain-gradient
elasticity for an arbitrary multi-lattice. In addition to the classical (2nd-Piola) stress and elastic moduli tensors, these
include the rank-three double-stress tensor, the rank-five tensor of mixed elastic moduli, and the rank-six tensor of
strain-gradient elastic moduli. The atomistic representations are closed-form analytical expressions in terms of the
first and second derivatives of the interatomic potential with respect to interatomic distances, and dyadic products
of relative atomic positions. Moreover, all expressions are local, in the sense that they depend only on the atomic
neighborhood of a lattice site. Our results emanate from the condition of energetic equivalence between continuum
and atomistic representations of a crystal, when the kinematics of the latter is governed by the Cauchy-Born rule.
Using the derived expressions, we prove that the odd-order tensors vanish if the lattice basis admits central-symmetry.
The analytical expressions are implemented as a KIM compliant algorithm to compute the strain gradient elastic
tensors for various materials. Numerical results are presented to compare representative interatomic potentials used
in the literature for cubic crystals, including simple lattices (fcc Al and Cu, and bcc Fe and W), and multi-lattices
(diamond-cubic Si). We observe that central potentials exhibit generalized Cauchy relations for the rank-six tensor
of strain-gradient elastic moduli. In addition, this tensor is found to be indefinite for many potentials. We discuss
the relationship between indefiniteness and material stability. Finally, the atomistic representations are specialized to
central potentials in simple lattices. These expressions are used with analytical potentials to study the sensitivity of
the elastic tensors to the choice of the cutoff radius.
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1. Introduction

The fundamental constitutive assumption of the classical continuum theory of elasticity is that the strain energy
density of a solid depends on the first gradient of the deformation map (e.g. Malvern, 1977; Eringen, 1980; Truesdell
and Noll, 2010; Marsden and Hughes, 1994). Such an assumption determines the structure of the boundary value
problem of elasticity, and it gives rise to a theory without intrinsic length scales. As a consequence, classical elasticity
theory fails to capture materials size effects and scaling of mechanical phenomena such as surface elasticity and dis-
persion of acoustic waves. Moreover, at the nano-scale, where the discrete atomic nature of matter becomes relevant,
the theory predicts unphysical singularities in the elastic fields of crystal defects, such as cracks and dislocations.

Because of these intrinsic limitations of classical elasticity, during the last four decades atomistic methods have
been developed to study nano- and micro-scale phenomena in materials mechanics. In the concurrent multiscale
framework, methods were also developed to consistently bridge atomistic and continuum regions of a deformed body.
For example, the quasi-continuum method developed by Tadmor et al. (1999) represents regions of high stress concen-
tration (crack tips, dislocation cores, etc.), and surface defects where non-local effects dominate, using an atomistic
model, while the rest of the body is described as a classical continuum. However, despite their potential, the spatial
resolution of atomistic-continuum multiscale methods rapidly converges to that of direct atomistic models when deal-
ing with heterogeneities such as surfaces or dislocations, which subjects them to limitations in the number of degrees
of freedom they can handle. In addition, transport and time-dependent properties are exceedingly difficult to capture
due to intrinsic heterogeneities in the atomistic/continuum coupling region, which results in reflections and unphysical
phenomena.
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