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a b s t r a c t

We consider a simple discrete model for screw dislocations in crystals. Using a variational
discrete scheme we study the motion of a configuration of dislocations toward low energy
configurations. We deduce an effective fully overdamped dynamics that follows the
maximal dissipation criterion introduced in Cermelli and Gurtin (1999) and predicts
motion along the glide directions of the crystal.

& 2016 Elsevier Inc. All rights reserved.

1. Introduction

Dislocations are one-dimensional defects in the periodic structure of crystals, and their motion represents the micro-
scopic mechanism of plastic flow in metals. In view of this fundamental role, dislocations have been extensively studied by
theoretical, experimental and computational means. Classical models are mainly based on the so-called continuum theory
of dislocations, in the context of linearized elasticity (see Hull and Bacon, 2001; Hirth and Lothe, 1982 for a comprehensive
treatment). In recent years considerable efforts have been made in order to improve those models by including more
information from the microscopic scale. Much insight has been gained on the microscopic structure of dislocations through
fine numerical simulations (see e.g. Bulatov, 2002 and the references therein), and new phenomenological models ac-
counting for microscopic effects have been proposed (e.g. Groma, 1997; Yefimov et al., 2004), while a variety of rigorous
mathematical analyses has been done to bridge different scales (see Scardia et al., 2014; El Hajj et al., 2009; Conti et al., 2015
and the references therein; see also Mielke and Truskinovsky, 2012). A major issue behind those approaches is the for-
mulation of a simple and efficient discrete model for dislocations that should be the starting point of a multi-scale analysis.

In this paper we consider a two dimensional model for screw dislocations that is inspired to the Frenkel–Kontorova
model for dislocation dynamics (Frenkel and Kontorova, 1938). We consider an anti-plane discrete setting in which atoms
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can only move vertically and interact through a two-body periodic potential, a prototypical example being a piecewise
quadratic function with wells at the integers. Such type of models have been proposed by many authors (e.g. Carpio and
Bonilla, 2003; Salman and Truskinovsky, 2012; Flytzanis et al., 1977; Hudson and Ortner, 2014) and are based on the ideal
mechanism of plastic slip governed by a Peierls potential (Hirth and Lothe, 1982). Periodic potentials show up naturally
starting from three-dimensional particle interaction energies assuming crystallization and anti-plane deformations. We
derive their specific form for some precise crystalline structures (as BCC, FCC and HCP lattices), starting from Lennard-Jones
type energies and assuming nearest neighbor interactions. More general multi-body interaction energies could be con-
sidered, such as those used in the Embedded Atom Method (see Daw and Baskes, 1984; Ramasubramaniam et al., 2007 for a
discussion on EAM in the context of dislocation dynamics). Our analysis can be performed also in these more general
frameworks with minor changes, relying on the specific assumptions on the interaction potentials.

Our model follows the general approach developed in Ariza and Ortiz (2005). We adopt the formalism therein to in-
troduce the notion of elastic and plastic strain defined on each bond of the lattice, and the notion of discrete dislocations
associated to each cell of the lattice. One of the advantages of considering a genuine discrete model is that it does not need
any artificial regularization of the core, which is otherwise common in linear continuum (or rather semi-discrete) theories.

According to the so-called low-energy dislocation structure assumption (LEDS, Kuhlmann-Wilsdorf, 1999), dislocations
move following a steepest-descent criterion. Nevertheless, it is well known that at zero temperature discrete dislocations
are pinned by the energy barriers due to the lattice structure. This has been proved analytically for the model under
consideration in Hudson and Ortner (2014, 2015), Alicandro et al. (2014) and De Luca (2016). Clearly, the depinning me-
chanism is governed by fluctuations of the system that can tilt the potential allowing dislocations to overcome the energy
barriers. Here we work in the simplified zero temperature context in which thermal effects are neglected and we describe
the depinning and motion of dislocations toward states with lower energy, by considering a variational discrete (in time and
space) scheme, already proposed in Ramasubramaniam et al. (2007) and Alicandro et al. (2014). Precisely, we introduce a
parameter τ, that we refer to as time step, and at each time step we minimize the elastic energy stored in the crystal plus a
term that accounts for the energy dissipated in moving dislocations from a site to another. The discrete parameter τ sets the
size of the area that dislocations may explore in order to reach a local minimizer, mimicking thermal effects.

A rate-independent (1-homogeneous) dissipation in the presence of a time dependent load, in the spirit of Ramasu-
bramaniam et al. (2007), would lead to a quasi-static evolution (see e.g. Mora et al., 2014 for a rate-independent evolution
law for edge dislocations). Here we consider the case of a rate-dependent quadratic dissipation that leads to a fully over-
damped dynamics, neglecting inertial effects as well as all the other external body forces (see Cermelli and Gurtin, 1999).
Several different effects could be taken into account, leading to more complex continuum dynamics (see for instance
Eshelby, 1953; Hirth and Lothe, 1982; Kresse and Truskinovsky, 2003).

We derive an effective dynamics, the so-called discrete dislocation dynamics, by means of a multi-scale analysis of the
discrete elastic energy stored in the crystal (see also El Hajj et al., 2009). It turns out (Cermelli and Leoni, 2005; Alicandro
et al., 2014; De Luca, 2016) that, in the limit as the lattice spacing tends to zero (or equivalently in the large-body limit) the
elastic energy can be decomposed into a self-energy, which scales logarithmically in the core radius, plus an interaction
energy ( … )W x x, , M1 depending on the dislocation positions xi. The latter is determined by the behavior of the discrete
periodic interaction potential at the bottom of the wells. In this respect, we validate the harmonic approximation of the far
field as predicted by the continuum linear theory (see Scardia and Zeppieri, 2012; Müller et al., 2014).

We would like to remark that this analysis has many similarities with other theories in which the presence of topological
defects plays an important role (Alicandro et al., 2011). This is the case of the Ginzburg–Landau model for vortices in super-
conductors (Bethuel et al., 1994; Sandier and Serfaty, 2007). Borrowing the terminology from that context, we refer to the
interaction energy between dislocations ( … )W x x, , M1 as the renormalized energy. The gradient of the renormalized energy is
nothing but the Peach–Koehler force j between dislocations; namely, = − ∇j Wi xi is the force acting on the dislocation at xi.
The corresponding overdamped dynamics is then driven by the Peach–Koehler force (see Forcadel et al., 2009).

A crucial issue in the time-discrete scheme is the specific choice of the dissipation potential. Choosing a quadratic iso-
tropic dissipation, one recovers an implicit Euler scheme for the renormalized energy, and hence, in the limit of the time
step to zero, the fully overdamped discrete dislocation dynamics ̇ =x ji i (see Alicandro et al., 2014).

Here we make a different choice. We consider a crystalline dissipation that accounts for the specific lattice structure and that
is minimal exactly on the preferred glide directions (that in this model are considered as a given material property of the crystal).
As a consequence of this choice, we derive an effective dynamics that forces the motion along the glide directions, and follows
the maximal energy dissipation criterion postulated in Cermelli and Gurtin (1999). Indeed, dislocations move along the glide
direction that maximizes the scalar product with the force = − ∇j W . Clearly this direction could be not unique, so that dis-
locations can rapidly move from a glide direction to another. This effective dynamics may also predict cross-slip and fine cross-
slip, according to Cermelli and Gurtin (1999) and the analysis and the simulations performed in the recent papers (Blass et al.,
2015; Blass and Morandotti, 2014). In view of this lack of uniqueness of the velocity field of the dislocations, the effective
dynamics turns out to be described by a differential inclusion rather than a differential equation (see Filippov, 1988).

Our discrete variational scheme provides a simple and natural model to describe the depinning and the dynamics of
screw dislocations, taking into account the preferred glide directions. Moreover it provides an approximation of the effective
dynamics proposed by Cermelli and Gurtin (1999), highlighting its gradient flow structure.
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