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a b s t r a c t 

In the context of Mindlin’s second strain gradient theory, a homogenization scheme for the determina- 

tion of the effective overall properties of particulate composites with periodic microstructure is developed 

in this paper. This homogenization method is based on the direct application of an equivalent inclusion 

method adapted to second strain gradient theory in such a manner that the consistency conditions, in ad- 

dition to the stress field, are applied to the double stress and triple stress fields of the representative unit 

cell of composite and its corresponding inclusion problem. Subsequently, by equating the potential energy 

of the composite material with that of an equivalent homogeneous material, the effective overall elastic 

moduli of the composite are determined. Moreover, it is shown that the energy expression of the equiva- 

lent homogeneous material includes two additional parameters, namely, the cohesion-mismatch-induced 

initial stress and the cohesion-mismatch-induced surface tension, both arising from the mismatch in the 

cohesion moduli of the matrix and the reinforcing particles of the composite. The effects of particle size 

and particle–matrix interface manifest themselves in the formulations and the obtained results of the 

paper. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The concepts of eigenstrain and inclusion are effective tools in 

micromechanics of solids for the understanding of a wide spec- 

trum of phenomena such as thermal expansion, phase transfor- 

mation, or plastic strains. These concepts, on the other hand, play 

key roles in the micromechanical schemes exploited for the deter- 

mination of the effective overall properties of heterogeneous ma- 

terials. Among the pioneer studies concerned with such concepts 

should be mentioned the celebrated paper of Eshelby (1957) who 

addressed the problem of an isolated ellipsoidal inclusion embed- 

ded in an infinite medium. Eshelby showed that, if a uniform dis- 

tribution of eigenstrain is prescribed in an ellipsoidal inclusion, 

then the induced disturbance strain field inside the inclusion will 

be uniform ( Eshelby, 1957 ). He accordingly introduced a fourth- 

ranked tensor known as Eshelby’s tensor that relates the compo- 

nents of the disturbance strain tensor to those of the eigenstrain 

tensor. As a result, a new prospect was opened to researchers and, 

afterwards, abundant efforts were made to investigate similar and 

relevant problems. Solutions to a variety of problems including pe- 

riodically distributed inclusions as well as isolated inclusions are 

available in the book by Mura (1987) . 
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The other significant contribution of Eshelby is to establish a 

method for the determination of the elastic field of an isolated in- 

homogeneity embedded in an infinite medium subjected to a re- 

mote applied load ( Eshelby, 1961 ). According to such method, an 

inhomogeneity is replaced by an inclusion with the same shape 

and size and, then, a proper distribution of homogenizing eigen- 

strain is prescribed within the inclusion in such a manner that the 

stress fields of the two problems become identical to each other. 

Such an interesting idea, referred to as the equivalent inclusion 

method, has broadly been used to study the mechanical behav- 

ior of heterogeneous materials, particularly fibrous and particulate 

composites. In fact, it should be stated that the equivalent inclu- 

sion method is a cornerstone of the micromechanical approaches 

developed for the estimation of the effective overall properties of 

composites. From a general point of view, such approaches can be 

categorized into two groups: ( i ) the average-field methods and ( ii ) 

the homogenization methods. The average-field methods, including 

Mori–Tanaka theory ( Mori and Tanaka, 1973 ) and self-consistent 

theory ( Hill, 1963; Budiansky, 1965 ), are based on the fact that the 

effective overall properties of a heterogeneous body are connected 

with the volume average of its elastic fields where the solution to 

these fields is approximated by that of an isolated inhomogene- 

ity embedded in an unbounded medium. While the average-field 

methods are often admissible to study dilute composites, the ho- 

mogenization methods make it possible to obtain a rigorous pre- 
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diction of the effective overall properties of composites consist- 

ing of densely packed inhomogeneities. For example, let us men- 

tion the papers by Nemat-Nasser and coworkers ( Nemat-Nasser 

and Taya, 1981; Nemat-Nasser et al., 1982; Iwakuma and Nemat- 

Nasser, 1983 ) who employed a homogenization scheme for the de- 

termination of the macroscopic behavior of particulate compos- 

ites with periodic microstructure. According to their approach, the 

equivalent inclusion method is applied to the representative unit 

cell of composite and, consequently, the elastic field of the unit 

cell is determined. Then, by setting the strain energy of the com- 

posite medium equal to that of an equivalent homogenous body, 

the effective overall elastic moduli of the composite are calculated. 

Along this line of thought, one may find several studies in the lit- 

erature concerned with different aspects of the macroscopic me- 

chanical behavior of composite materials ( Rodin, 1993; Wu et al., 

1997; Shodja and Roumi, 2005, 2006 ). 

It should be remarked that all of the aforementioned investiga- 

tions are in the framework of classical theory of elasticity. Even 

though the effectiveness and accuracy of this theory for a wide 

range of engineering applications have been proved, nevertheless 

there exist some critical limitations to its application, in particular, 

to small-scale problems where size effect has an important role 

in the mechanical behavior of materials ( Kouzeli and Mortensen, 

20 02; Cho et al., 20 06; Vollenberg and Heikens, 1989 ). To over- 

come such a drawback, a variety of higher-order theories including 

Cosserat theory ( Cosserat and Cosserat, 1909 ), couple stress theory 

( Mindlin and Tiersten, 1962 ), nonlocal theory ( Eringen and Edelen, 

1972 ), and strain gradient theories ( Toupin, 1962; Mindlin, 1965 ) 

have thus far been introduced and developed. It is worthwhile to 

mention here that, even though all of the higher-order theories are 

somehow capable of accounting for a size effect, many of them, 

however, may lead to quite different solutions for a single prob- 

lem. Hence, it should be stated that the validity of predictions of 

these theories is in doubt unless supported by experimental find- 

ings. 

By employing the higher-order theories, several authors have 

dealt with various problems related to inclusions and inhomo- 

geneities. For example, Cheng and He (1995) determined Eshelby’s 

tensors for a spherical inclusion embedded in a Cosserat medium. 

Moreover, they applied an equivalent inclusion method to the 

problem of inhomogeneity in the framework of micropolar elas- 

ticity and derived the associated equivalency conditions. Ma and 

Hu (2006) obtained analytical forms for Eshelby’s tensors of an el- 

lipsoidal inclusion in a micropolar medium. Liu and Hu (2004) de- 

rived expressions for Eshelby’s tensors of a spherical inclusion in 

a microstretch medium. Zheng and Zhao (2004) obtained Eshelby’s 

tensors for a spherical inclusion embedded in a couple stress body. 

Gao and Ma, by employing a simplified version of first strain gradi- 

ent theory, provided analytical expressions for Eshelby’s tensors of 

ellipsoidal ( Gao and Ma, 2010 ) and cylindrical inclusions ( Ma and 

Gao, 2010 ). The solutions obtained in the context of the higher- 

order theories in these studies have demonstrated the effect of in- 

clusion size on its elastic state and stated that such an effect for 

inclusions with smaller dimensions is more significant. 

While all of the latter-mentioned studies are concerned with 

the problem of an isolated inclusion/inh-omogeneity, the higher- 

order theories have, in addition, been utilized for the examination 

of the overall behavior of composite materials by several authors. 

For example, Yuan and Tomita (2001) employed a homogenization 

method to predict the macroscopic behavior of a heterogeneous 

Cosserat material with periodic microstructure. Xun et al. (2004) , 

by using the average-field theory, determined the effective in-plane 

shear and bulk moduli of a micropolar composite medium hav- 

ing coated fibers. Haftbaradaran and Shodja (2009) , by employing 

Mori–Tanaka theory, estimated the overall anti-plane shear mod- 

uli of a couple stress matrix with unidirectional elliptic cylindrical 

fibers. Zhang and Sharma (2005) , by postulating a simplified form 

of second strain gradient theory, extended the equivalent inclusion 

method to determine the elastic state of a spherical inhomogeneity 

and, subsequently, within Mori–Tanaka scheme obtained expres- 

sions for the effective overall properties of a composite medium 

reinforced with such inhomogeneities. Ma and Gao (2014) , in the 

framework of a simplified version of first strain gradient theory 

and by using Mori–Tanaka theory, developed a method for the de- 

termination of the effective overall elastic moduli of composite ma- 

trices reinforced by spherical, cylindrical or ellipsoidal particles. 

The purpose of the present study is to extract estimates of the 

effective overall properties of a particulate composite with peri- 

odic microstructure in the framework of Mindlin’s second strain 

gradient theory. To this end, first an equivalent inclusion method 

adapted to such theory is applied to the representative unit cell of 

the composite and, then, the corresponding consistency conditions 

are derived. By utilizing Fourier series expansion method, a solu- 

tion for the elastic state of the problem is obtained. Subsequently, 

by introducing a homogenization technique consistent with second 

strain gradient theory, the effective overall elastic moduli of the 

composite are determined. In light of the features of second strain 

gradient theory, the proposed approach in this paper is expected 

to be capable of capturing simultaneously the effects of particle 

size and particle–matrix interface. Hence, the results and discus- 

sion section of this paper is dedicated to the calculation of the 

overall properties of particulate composites reinforced with nano- 

sized particles. The discrepancy between the results of the pro- 

posed approach and those of classical elasticity for such compos- 

ites is quite evident. 

2. A brief review on the fundamentals of second strain 

gradient theory 

In Mindlin’s second strain gradient theory of elasticity ( Mindlin, 

1965 ), the potential energy density function W of an elastic solid 

medium is assumed to be a function of the first and second gra- 

dients of the strain tensor in addition to the strain tensor itself. In 

this theory, W is expressed as 

W ≡ W (e i j , e i jk , e i jkl ) (1) 

in which e ij , e ijk , and e ijkl are, respectively, the components of the 

strain, double strain, and triple strain tensors that are related to 

the displacement component u i via 

e i j = 

1 

2 

(u i, j + u j,i ) , (2a) 

e i jk = u k,i j , (2b) 

e i jkl = u l,i jk . (2c) 

For a hyperelastic material, the energy density function W can 

be expanded in the form ( Ojaghnezhad and Shodja, 2013 ) 

W = 

1 

2 

C i jkl e i j e kl + F i jklmn e i j e klmn + 

1 

2 

G i jklmn e i jk e lmn 

+ 

1 

2 

H i jklmnpq e i jkl e mnpq + B i jkl e i jkl (3) 

where the components of the elastic moduli tensors C ijkl , F ijklmn , 

G ijklmn H ijklmnpq , and B ijkl for an isotropic material are given by 

C i jkl = λδi j δkl + μ
(
δik δ jl + δil δ jk 

)
, (4a) 

F i jklmn = 

1 

3 

c 1 δi j δklmn + 

1 

6 

c 2 
(
δ jnmlki + δ jnklmi 

)

+ 

1 

6 

c 3 
(
δiknml j + δ jmnkli 

)
, (4b) 
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