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a b s t r a c t 

The stress wave scattering off of any finite slab may be used as a physical approach to determining some 

or all of the overall dynamic constitutive parameters of such a specimen. In this paper, this approach is 

applied to normal incidence of symmetric and asymmetric layered structures with elastic or viscoelastic 

layers. The method determines all of the overall constitutive constants of a Willis-type material (includ- 

ing zero and non-zero coupling parameters) for all frequencies, even in stop bands of elastic structures, 

exactly. The ambiguity in phase velocity calculation is overcome using continuity considerations. Symme- 

tries in coupling constants and the restrictions due to energy conservation and dissipation are presented. 

Integrating the wave equations directly leads to a proposed micro-structural scheme for determination 

of the overall constitutive parameters. The results of this method are identical to those derived based 

on the scattering response for all frequencies, including stop bands, and beyond the long wavelength 

limit of traditional homogenization techniques. The proposed approach has the potential to be applied to 

3D-structured unit cells, oblique incidences, and simultaneous scattering of multiple waves. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The primary focus of this paper is to derive accurate and prefer- 

ably exact overall constitutive descriptions of wave propagation in 

periodic micro-structured media. This involves the derivation and 

validation of overall dynamic tensors for which the scattering and 

flux of energy match those of the macro-scale mechanical waves 

in a micro-structured medium. Satisfying Hill–Mandel (HM) crite- 

rion, i.e. the equivalence of the total micro-scale and overall en- 

ergy quantities, has been considered a requirement for elastic ho- 

mogenization approaches ( Hill, 1965; Budiansky, 1965 ). The mag- 

nitude of deviation from HM (e.g. due to nonlinear material re- 

sponse) is generally used as the quantity that determines the limit 

of applicability of homogenization. In the case of dynamic homog- 

enization for stress waves, satisfying HM criterion requires further 

attention due to the kinetic energy. Some researchers have intro- 

duced source terms (e.g. Wang and Sun, 2002 ) to deal with HM re- 

quirement. Even methods including higher order homogenization 

schemes, such as the non-local approach (e.g. in Hui and Oskay, 

2013 ) will still need to address this issue as discussed in Fafalis 

and Fish (2015) . 

The kinetic energy coupling is not the sole complicating factor 

in dynamic homogenization. While a direct replacement of com- 
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plex moduli of viscoelastic constituents for elastic ones, as sug- 

gested in Hashin (1970) , has been quite satisfactory in predict- 

ing the overall storage and loss moduli of composites (see for ex- 

ample Nantasetphong et al., 2016a,b ), it is not an exact treatment 

even in the quasi-static limit. The loss of energy will be ampli- 

fied for higher frequencies due to local deformations and scatter- 

ing ( Qiao et al., 2016 ). On the other hand, dynamic homogeniza- 

tion approaches (particularly in frequency domain) have the poten- 

tial to give complex valued overall constants for propagating waves 

even with fully elastic constituents ( Sabina and Willis, 1988 ). Pas- 

sivity, a weaker necessary condition than conservation of energy, 

appears to be violated by some retrieval methods for overall dy- 

namic properties of heterogeneous media as discussed in Simovski 

(2009) and Srivastava (2015) , particularly as the constitutive ten- 

sors are treated independently. 

The interest in numerical modeling and experimental demon- 

stration of wave propagation and stop bands in the acoustic re- 

sponse of locally resonant 3D periodic media was renewed in the 

early 20 0 0s; see for example Liu et al. (20 0 0a,b) . For this partic- 

ular case, the authors later revisited the overall mass density es- 

timates based on multiple scattering theory and commented on 

the need to properly homogenize overall density in addition to 

the elastic moduli tensor ( Sheng et al., 2007 ). The need to intro- 

duce coupling between momentum and strain and between stress 

and particle velocity, i.e. Willis-type constitutive law, was implied 

around the same time in Willis (1981a,b) but came into greater 
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focus much more recently ( Milton and Willis, 2007 ). Both these 

observations, i.e. the shortcomings of independent homogeniza- 

tion of the constitutive tensors and the need to introduce cou- 

pling ones were observed and discussed earlier for electromagnetic 

metamaterials and composites. Overall magnetic response was dis- 

cussed in Pendry et al. (1999) , while the first demonstration of 

negative refraction was given in Shelby et al. (2001) . Examples of 

homogenization of media with chiral matrix and geometry may 

be found in Wiegelhofer et al. (1997) and Amirkhizi and Nemat- 

Nasser (2008b) , respectively. Calculation of overall properties based 

on some sort of field averaging has been discussed in Smith and 

Pendry (2006) , Silveirinha (2007) , Amirkhizi and Nemat-Nasser 

(2008a,b) and Andryieuski et al. (2012) , while extraction based on 

scattering response has been discussed in Smith et al. (2002) , Chen 

et al. (2004) , Bayatpur et al. (2012) and Cohen and Shavit (2015) . 

Some of these researchers also dealt with bianisotropy, which con- 

stitutes coupling between electric and magnetic fields due to the 

mirror asymmetry of the unit cell (or constituent materials). A 

number of these references include both approaches as has been 

done also critically in Simovski and Tretyakov (2007) and Arslanagi 

et al. (2013) . 

The derivation of overall constitutive tensors for stress waves 

in heterogeneous media has been traditionally focused on field av- 

eraging techniques ( Willis, 2009; Nemat-Nasser et al., 2011; Willis, 

2011; Srivastava and Nemat-Nasser, 2012; Norris et al., 2012 ). Com- 

parisons were made with expected scattering response in some 

cases for the long wavelength limit. The use of reflection and trans- 

mission coefficients for the extraction of overall dynamic proper- 

ties has received limited attention, e.g. in Fokin et al. (2007) and 

Zhu et al. (2012) , as has the calculation of the impedance from field 

integrations ( Yang et al., 2014 ). While the field averaging meth- 

ods are inherently preferred in numerical analysis of complex 2D 

and 3D geometries and are mathematically more attractive, the 

scattering-based methods are more desirable as the natural foun- 

dation for measuring material properties in experiments due to the 

lack of access to micro-scale field quantities in the laboratory. It 

makes physical sense to weigh the suitability of averaging meth- 

ods with the experimentally observable scattering response of fi- 

nite samples. Therefore in this paper, overall properties of layered 

elastic and viscoelastic media are derived based on the scattering 

of finite samples from transfer matrix calculations. The method de- 

scribed here applies to symmetric and asymmetric unit cells equiv- 

alently and produces coupling parameter without any extra effort 

or special attention. To do so, it utilizes the full scattering response 

of a layered slab based on its transfer matrix, i.e. forward and back- 

ward solutions, even though in symmetric structures they are the 

same. It must be noted that the transfer matrix solution may be 

used to define point-wise impedance values, which match the ones 

derived from scattering analysis for the same structure. The gen- 

eral approach can be extended analytically or numerically to multi- 

dimensional structures, where a closed form solution may or may 

not be available. The issue of branch ambiguity for the phase ve- 

locity is discussed and resolved based on continuity considerations. 

The effect of energy conservation (in fully elastic cases) and pas- 

sivity (in general) on the signs of the constitutive parameters are 

discussed briefly based on power flux considerations. The overall 

response of some asymmetric unit cell examples are derived next 

and followed by the results for an apparently asymmetric cell that 

would produce a symmetric infinitely periodic structure. A field av- 

eraging method based on direct integration of the wave equation 

is proposed and applied to the solutions from an infinitely peri- 

odic structure. The results match the scattering response for all fre- 

quencies with an equivalent unit cell. A comparison is made with 

another field averaging method, showing the compatibility in the 

long wavelength limit and deviations as one approaches the reso- 

nance areas. Finally, a short discussion of the applicability of these 

methods to higher dimensional structures is presented at the con- 

clusion. 

2. Transfer matrix of a slab with coupled constitutive law 

The 1D elastodynamics homogeneous wave equation may be 

written as the combination of the continuity and equilibrium equa- 

tions 

v ,x = ε ,t , 

σ,x = p ,t , 
(1) 

where v, σ , p , and ε denote particle velocity, stress, momen- 

tum density (per unit volume), and strain, respectively, and sub- 

scripts after comma sign represent partial differentiation. Consider 

a Willis-type constitutive law (
v 
σ

)
= 

(
η κv ε 

κσ p μ

)(
p 
ε 

)
, (2) 

where η is the specific volume (inverse ρ , density) and μ is 

the relevant modulus of elasticity (e.g. longitudinal, shear, or 

Young’s), while κv ɛ and κσp denote particle velocity/strain and 

stress/momentum density couplings, respectively. Eq. (2) is a 

slightly transformed version of the formulation used in Milton and 

Willis (2007) and Willis (2009) , in that stress is grouped with par- 

ticle velocity instead of momentum density. Either of these forms 

may be derived from the other. Matrix inversion of Eq. (2) gives a 

more familiar form in terms of density and compliance. One rea- 

son for using this form is the similarity with Eq. (1) . In frequency 

domain, the physical quantities described above ( β = v , σ, p, ε) are 

written as β(x, t) = � (βc (x ) e −iωt ) , where ω = 2 π f is the angular 

frequency and βc is the complex amplitude. In the following, the 

subscript c is dropped unless there is potential for confusion. The 

transfer matrix of a material layer normal to the x -axis, and identi- 

fied by index j , relates the appropriate particle velocity and stress 

tensor components (in this case their x -components) on the two 

boundaries: (
v (x j+1 ) 
σ (x j+1 ) 

)
= T j 

(
v (x j ) 
σ (x j ) 

)
. (3) 

T j is a function of the frequency, the layer’s material constitutive 

parameters, and its thickness d j = x j+1 − x j , where x j and x j+1 rep- 

resent the coordinates of the two surfaces of the layer. For each 

frequency value, the homogeneous wave equation has the general 

solution superposing two independent waves (
v (x, k j ) 
σ (x, k j ) 

)
= 

(
1 

−z j (k j ) 

)
A j (k j ) e 

ik j x , x j ≤ x ≤ x j+1 (4) 

where the wave vector k j can take two possible values, say k j = 

k + 
j 
, k −

j 
, A j ( k j ) are the complex amplitudes of the two waves, and 

z j (k j ) = −σ (x, k j ) 

v (x, k j ) 
, (5) 

is the impedance of layer j associated with the wave vector k j . 

With this notation, and for a general case (suppressing the index) 

the transfer matrix may be written as 

T (ω) = 

1 

z + − z −

(
−z −e ik 

+ d + z + e ik 
−d −e ik 

+ d + e ik 
−d 

z + z −(e ik 
+ d − e ik 

−d ) z + e ik 
+ d − z −e ik 

−d 

)
, (6) 

where for example k + = k + 
j 
, k − = k −

j 
, z + = z j (k + 

j 
) , and z − = z j (k −

j 
) . 

When z − = −z + = −z and k − = −k + = −k, this will simplify to the 

more familiar form: 

T = 

( 

cos kd − i 

z 
sin kd 

−iz sin kd cos kd 

) 

. (7) 
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