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a b s t r a c t 

Localization in the deformation field, even though initiated locally at the microscopic scale, leads upon 

increased deformation to fracture at the macroscopic scale, thereby violating the separation of length 

scales. Localization and damage can be accounted for in macroscopic modeling by appropriate enrich- 

ments at that level, however doing so requires (i) detecting the onset of localization prior to its actual 

occurrence and (ii) quantifying the kinematical characteristics of the localization band. This paper serves 

that goal. A methodology is developed to analyze the evolution of strain- and displacement-fields during 

deformation. A key ingredient in this analysis is the use of the Minkowski functionals (also known as 

intrinsic volumes, quermass integrals, or curvature integrals) from integral geometry, to detect emerging 

patterns in thresholded strain- and displacement-fields. Doing so, the onset of localization in the mi- 

crostructure is detected as the emergence of a correlated and narrow pattern of high strains, prior to the 

actual loss of material stability. Furthermore, the developed localization band is characterized in terms 

of a weak displacement discontinuity, incorporating the width and direction of the band. The developed 

methodology uses kinematical fields only, and is therefore applicable to both numerical and experimen- 

tal deformation-field data. For illustration purposes, numerical data from a finite-element simulation of a 

deformed voided microstructure is used, without any loss of generality. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Multiscale methods provide an essential contribution to bridg- 

ing scales in mechanics of materials and material science. Nowa- 

days, they are widely applied in designing, engineering and pro- 

cessing of advanced materials, e.g. composite materials, advanced 

alloys, biological materials. In recent years, various multiscale 

methods have been proposed to tackle scale bridging, e.g. asymp- 

totic and homogenization methods ( Cailletaud et al., 2003 ), het- 

erogeneous multiscale methods ( E et al., 20 07; Chen, 20 09 ), varia- 

tional multiscale methods ( Hughes et al., 1998 ), computational ho- 

mogenization ( Kouznetsova et al., 2001; Smit et al., 1998; Miehe 

et al., 1999; Geers et al., 2010; Schröder and Hackl, 2014; Oller, 

2014 ) and experimental studies ( Efstathiou et al., 2010 ). However, 

several classes of engineering problems represent cases in which 

scales strongly interact. In other words, there is no clear separa- 

tion of length scales, and hence a clear distinction of phenomena 

into fine- or coarse-scale features is cumbersome, if not even im- 
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possible. A prominent example in this respect is material damage. 

Initiation and growth of damage is typically associated with the 

emergence of narrow regions with localizing strains at the micro- 

scale ( Coenen et al., 2012b; Nguyen et al., 2011 ). While the pro- 

gressive degradation of a material starts at the micro-scale, it grad- 

ually propagates to the macro-scale until material stability is lost, 

resulting in overall failure, i.e. fracture. As damage spans a wide 

range of length scales, it intrinsically violates scale separation and 

compromises the applicability of existing multiscale methods. In 

turn, this implies that, depending on the progression of the dam- 

age, the material model that is used to study the macroscopic be- 

havior needs to be enriched. To that end, it is mandatory to devise 

a methodology that detects the necessity for an enrichment of the 

macroscopic model prior to the actual loss of stability. Therefore, 

an appropriate characterization of pattern formation in the micro- 

scale features is required in order to identify a precursor of local- 

ization. 

Several studies have investigated strain localization by applying 

prototypical modeling, numerical simulations and experimental in- 

vestigations. Various experimental techniques allow to investigate 

deformation and strain localization of materials at various length 

scales, including non-contact optical and interferometric methods 
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( Cloud, 1998 ), atomic force microscopy ( Tanaka et al., 2007; Man 

et al., 2002 ), transmission electron microscopy (TEM) ( Saito et al., 

2005 ), scanning electron microscope (SEM) ( Crostack et al., 2001; 

Sutton et al., 2007b; Tanaka et al., 2011 ) and digital image correla- 

tion (DIC) ( Pan et al., 2009; Marty et al., 2015; Arikawa et al., 2011; 

Kammers and Daly, 2013; Sutton et al., 2007a ). Several advanced 

numerical methods are dedicated to micro-mechanical modeling 

that incorporates damage ( Uthaisangsuk et al., 2009; Tekoglu and 

Pardoen, 2010; Legarth and Niordson, 2010; Ghosh et al., 2009; 

Kim and Lee, 2010 ) for which a continuous-discontinuous homog- 

enization scheme is required to capture localization ( Coenen et al., 

2011, 2012b; Nguyen et al., 2012, 2011; Bosco et al., 2014; T. Be- 

lytschko, 2010; Ji et al., 2015; Paul and Kumar, 2012 ). Note that 

identifying material instabilities may be involved, see e.g. Benallal 

and Comi (1996) ; Szabó (20 0 0) ; Benallal et al. (2010) ; Altmeyer 

et al. (2013) . Here, the onset of localization will be captured natu- 

rally on the basis of the observed kinematics. 

Localization occurs as a rapid collective growth and concentra- 

tion of the microfluctuations in the strain field, culminating into 

a narrow high-gradient region in the sample, typically accompa- 

nying strain softening and thereby inducing material instability. 

Localization generally manifests itself as an irregular band of in- 

tense strains crossing the microstructure and provoking the emer- 

gence of a pronounced displacement variation. The latter is typ- 

ically described by a weak discontinuity ( Bosco et al., 2014; Liu, 

2015 ). A weak discontinuity divides the micro-scale into regions of 

small and large displacements, respectively, separated by a smooth 

but pronounced transition. At the macro-scale, this may also be 

captured as a weak discontinuity or a discrete jump in the dis- 

placement field. Both cases require that the kinematical character- 

istics of the strong or weak discontinuity are properly quantified 

and embedded into the (thereby extended) macroscopic descrip- 

tion to account for the localization, see e.g. Vernerey et al. (2007, 

2008) and Wang and Lee (2010) . 

There exists a strong demand for a technique, applicable both to 

numerical and experimental strain- and displacement-fields, that 

efficiently analyzes micro-fluctuations in order to detect localiza- 

tion patterns, prior to the loss of material stability, thereby sig- 

naling when an enrichment of the macroscopic model ( Coenen 

et al., 2012b ) becomes necessary. To predefine the onset of local- 

ization in a deforming microstructure, digital image analysis is ap- 

plied to investigate developing patterns in the micro-fluctuations 

in the deformation field. The latter makes use of a set of sequen- 

tial snapshots of strains or displacements in the deforming micro- 

sample. These snapshots may be obtained from an experimental 

analysis, e.g. using DIC, or by numerical modeling at the micro- 

scale. The resulting micro-fluctuation field is decomposed into its 

stochastic (i.e. uncorrelated) part and spatially correlated part, re- 

spectively. Strain localization typically entails evolving correlated 

patterns. The kinematical characteristics of these patterns need to 

be qualified and quantified, necessitating a systematic analysis of 

the overall morphology and topology of the patterns. 

The goals of this study are (i) to detect the precursors of lo- 

calization and (ii) to quantify the kinematical parameters required 

to enrich the macroscopic description in the presence of localiza- 

tion, based on the analysis of micro-fluctuations in the strain- and 

displacement-fields. Analysis of complex spatially fluctuating struc- 

tures is a relevant subject in statistical physics, for which several 

methods and tools have been proposed. The present article em- 

ploys the so-called Minkowski functionals ( Hadwiger, 1957; San- 

talò, 1976; Schneider, 1993; Weil, 1983; Munkres, 20 0 0; Ohser and 

Mücklich, 20 0 0 ), also known as intrinsic volumes (quermass inte- 

grals, curvature integrals), to analyze the evolving patterns in the 

micro-fluctuation field. Minkowski functionals represent a set of 

morphological descriptors describing the geometry of objects us- 

ing global integral quantities, in contrast to differential-geometric 

tools that provide local information. Analysis by Minkowski func- 

tionals finds wide application in physics, soft matter science, and 

medicine ( Mecke and Stoyan, 20 0 0; Petri et al., 2013; Hütter, 2003; 

Arns et al., 2010; Li et al., 2012 ). 

The paper is organized as follows. Section 2 reviews the 

Minkowski functionals as a mathematical tool for analyzing the 

morphology of digital images. A complete procedure for analyzing 

the micro-fluctuation field in order to identify correlated patterns 

leading to localization is presented in Section 3 . Section 4 is ded- 

icated to the kinematical enrichment in the macro-scale model in 

order to account for the key characteristics of the localization band. 

Finally, conclusions are presented in Section 5 . 

2. Analyzing digital images: Minkowski functionals 

The evolution of any scalar field, e.g. the equivalent total strain 

field, can be represented by a set of digital snapshots at discrete 

time instants. Digital images of the scalar field can be obtained by 

either numerical simulations or experimental techniques, thereby 

making the proposed approach applicable to both types of analy- 

sis. The evolution of the patterns in the scalar field of interest is 

captured and described by Minkowski functionals. 

Minkowski functionals are mathematically represented as in- 

tegral measurements of shape ( Hadwiger, 1957; Santalò, 1976; 

Schneider, 1993; Weil, 1983; Munkres, 20 0 0; Ohser and Mück- 

lich, 20 0 0 ). In d -dimensional space R 

d , there are d + 1 scalar 

Minkowski functionals W ν ( ν = 0 , .., d) that describe a domain Ω
with regular boundary ∂ Ω . The present study is restricted to R 

2 

space, i.e. to the analysis of 2D images. The three scalar Minkowski 

functionals are then represented as follows, 

W 0 (Ω) = 

∫ 
Ω

d Ω, W 1 (Ω) = 

1 

2 

∫ 
∂Ω

d r, W 2 (Ω) = 

1 

2 

∫ 
∂Ω

k d r, 

(1) 

with d Ω an infinitesimal area element, d r a one-dimensional line 

element on the boundary ∂ Ω, and k the (local) principle curvature 

of the boundary. These three Minkowski functionals W ν are related 

to the area ( W 0 ), boundary length ( W 1 ), and Euler characteristic 

( W 2 ) that describes the topology in terms of the connectivity of 

the structures in the domain Ω ⊂ R 

2 . 

While the above definitions (1) , particularly the ones for W 1 

and W 2 , refer to a differentiable smooth boundary, alternative for- 

mulations have been developed ( Mantz et al., 2008; Michielsen 

and De Raedt, 2001 ) that are applicable to the case of pixelized 

(2D) and voxelized data (3D). As a consequence, Minkowski func- 

tionals are widely applied to analyze texture of gray-scale 8-bit 

digital images. Gray-scale images are presented by a set of pix- 

els with intensity i p in the range i p ∈ [0 , 255] . Intensities i p = 0 

and i p = 255 correspond to the black and white color, respectively. 

A threshold i th ∈ [0 , 255] divides the image into foreground and 

background patterns: If the intensity of the pixel i p > i th then it is 

re-assigned to the maximum i p = 255 , otherwise it is re-assigned 

to i p = 0 . Doing so, a black-and-white binary image is obtained, 

which amounts to defining the pixel-equivalent of Ω in (1) . The 

black and white patterns in the binary image are referred to as 

background and foreground patterns, respectively. The Minkowski 

functionals W ν for gray-scale digital images are calculated on the 

thresholded variants, and are therefore functions of the threshold 

value i th , W ν = W ν (i th ) , quantifying the area, boundary length and 

connectivity (Euler characteristic) of the black structures for each 

value of i th . Increasing the threshold i th results in an increase of 

the background area W 0 . Corresponding changes in the boundary 

length are reflected by W 1 . The Euler characteristic, represented by 

the third functional W 2 , is defined as the difference between the 

number of disconnected background components (black structures) 
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