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a b s t r a c t 

This study investigates the effects that an initial local eigenstrain field, when superimposed on the ther- 

mal eigenstrain field, has on the overall thermal expansion coefficients and heat capacities of thermoe- 

lastic composites. The study can also be seen as an investigation into how a local residual stress field af- 

fects these overall moduli, as initial eigenstrains are generally a source of residual stresses. The approach 

taken is thermodynamic. Expressions that include the superimposed eigenstrain field are developed for 

the overall moduli within the framework of small strain thermoelasticity with temperature dependent 

materials. These expressions, which are written in terms of the concentration tensors and residual fields 

(stress and strain fields given rise to by the eigenstrains under zero overall stress and strain, respectively), 

contain correction terms that are absent in the expressions developed within linear thermoelasticity. Tak- 

ing into account the temperature dependence of the constituent moduli is shown to be essential to cap- 

ture the effects of the superimposed eigenstrain field. A Ti–6Al–4V/ZrO 2 composite is investigated for 

which the correction terms are found to be negligible for the heat capacities but significant for the ther- 

mal expansion coefficients. This suggests that, for applications with large temperature changes, using the 

linear-thermoelasticity-based expressions can affect the accuracy of the estimates of the overall moduli, 

and therefore the accuracy of thermostructural analyses of composite structures. The proposed expres- 

sions can be of use to estimate the overall thermoelastic moduli in contexts in which the strains remain 

small, temperature changes are large, and superimposed eigenstrains may be present. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

This study investigates how the thermal expansion coefficients 

and heat capacities of thermoelastic composites are affected by 

the presence of an initial local eigenstrain field superimposed on 

the thermal eigenstrain field. Eigenstrains being generally a source 

of residual stresses, this study can also be seen as an investiga- 

tion into how local residual stresses affect the overall thermoelas- 

tic moduli of composites. 

A broader framework than linear thermoelasticity is needed to 

explore the effects of the superimposed eigenstrain field on the 

overall thermoelastic moduli. Linear thermoelasticity assumes that 

the Helmholtz potential is quadratic in strain and temperature 

( Lubarda, 2004 ). This assumptions implies, among other things, 

temperature independent elasticities, which turns out to be too re- 

strictive for the purposes of this study. One such broader frame- 

work, and the one used here, is that of small strain thermoelastic- 

ity with temperature dependent materials ( Kovalenko, 1970 ). This 

framework is used in many studies on components having to with- 
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stand large temperature changes, including ceramic components 

under thermal shocks ( Han and Wang, 2011; Cheng et al., 2015 ). 

For applications of this kind, considering the temperature depen- 

dence of the materials is essential in the processes of materials se- 

lection ( de Faoite et al., 2013 ), structural analysis ( Ching and Chen, 

2007 ), and structural optimization ( Bobaru, 2007; Boussaa, 2009 ). 

Being more general, the framework accounts for more phenom- 

ena than does linear thermoelasticity. Thus, within the broader 

framework, Nadeau and Ferrari (2004) showed theoretically that 

the presence of a superimposed local eigenstrain field can induce 

anisotropy in the overall thermal expansion response in an other- 

wise macroscopically isotropic composite of isotropic constituents. 

They also drew a parallel between their findings and a “most sur- 

prising” thermal expansion anisotropy experimentally observed in 

a polycrystal, one explanation for which could be the presence of 

residual stresses ( Finlayson et al., 1981; Gibbs et al., 1981 ). 

Several approaches have been developed in small strain ther- 

moelasticity to estimate the overall thermoelastic moduli for 

composites with temperature-dependent constituents. A first ap- 

proach relies on numerical homogenization. E.g., the finite-element 

method was used to estimate the overall elasticities and ther- 
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mal expansion coefficients of silicon nitride ( Wippler et al., 2011 ). 

A second approach is analytical and yields the overall moduli in 

terms of the strain and stress concentration tensors and resid- 

ual fields. One variant of this approach consists in combining the 

stress-strain relation with the concentration relations ( Benveniste 

and Dvorak, 1990; Bahei-El-Din and Dvorak, 1997; Nadeau and Fer- 

rari, 2004; Dvorak, 2012 , pp. 250–252). A second variant consists 

in combining thermodynamic potentials with the concentration re- 

lations ( Boussaa, 2011 ). This second variant has the advantage of 

providing not only the overall elasticities and thermal expansion 

coefficients but also the overall heat capacities. 

This paper adopts and extends this second variant to accom- 

modate the presence of the superimposed eigenstrain field, and 

assesses the effects of that presence on the overall thermal expan- 

sion coefficients as well as on the overall heat capacities. 

The paper is organized as follows. Section 2 provides nota- 

tion and the definitions of the material moduli of interest here. 

Section 3 develops expressions for the Gibbs and Helmholtz po- 

tentials of a homogeneous material in which an initial eigenstrain 

is superimposed on the thermal eigenstrain. Section 4 recalls the 

concentration relations and obtains the macroscopic Gibbs and 

Helmholtz potentials of a heterogeneous material with an initial 

superimposed eigenstrain field. Section 5 derives the overall mod- 

uli from the macroscopic thermodynamic potentials. Section 6 pro- 

vides Levin-type formulas for two-phase composites. Section 7 dis- 

cusses a numerical example illustrating the application of the de- 

veloped framework to estimate the overall moduli of a high tem- 

perature composite with a superimposed eigenstrain field. Finally, 

Section 8 gives some concluding remarks. 

2. Thermoelastic material moduli of interest 

The material moduli of interest here are the isothermal elas- 

ticity tensor, L ; the isothermal compliance tensor, M ; the coeffi- 

cient of thermal expansion (CTE) tensor, α; the stress-temperature 

tensor, β; the heat capacity per unit reference volume at constant 

strain, C ε; and the heat capacity per unit reference volume at con- 

stant stress, C σ . These moduli are defined as follows: 

L = 

(
∂ σ

∂ ε

)
T 

, M = 

(
∂ ε

∂ σ

)
T 

, (1) 

α = 

(
∂ ε

∂T 

)
σ

, β = 

(
∂ σ

∂T 

)
ε

, (2) 

C ε = T 

(
∂η

∂T 

)
ε

, C σ = T 

(
∂η

∂T 

)
σ

, (3) 

where σ is the stress tensor, ε is the small strain tensor, T is the 

absolute temperature, and η is the entropy. 

The moduli thus defined depend a priori on the two indepen- 

dent variables used to describe the thermodynamic state of the 

material, which here are taken to be either stress and temperature 

or strain and temperature. When stress and temperature are used 

as independent variables, the dual variables, strain and entropy, are 

given by 

ε = −
(

∂g 

∂ σ

)
T 

, η = −
(

∂g 

∂T 

)
σ

, (4) 

where g is the Gibbs potential per unit reference volume. Similarly, 

when strain and temperature are used as independent variables, 

the dual variables, stress and entropy, are given by 

σ = 

(
∂ f 

∂ ε

)
T 

, η = −
(

∂ f 

∂T 

)
ε

, (5) 

where f is the Helmholtz potential per unit reference volume. 

From the above definitions, it follows that the moduli enjoy the 

usual symmetries. 

The symbols f 0 , g 0 and η0 will be used to denote the values 

of f, g , and η at some reference state, respectively. The reference 

state referred to will be specified at each use. The dot ‘‘ ·’ ’ will 

denote the usual inner product between second-order tensors: For 

any two second-order tensors X and Y , X · Y = X i j Y i j , with summa- 

tion over repeated indices. 

The overall or effective moduli will be denoted with superscript 

“eff”. 

3. Gibbs and Helmholtz potentials of a homogeneous 

thermoelastic material with a superimposed eigenstrain 

In ( Boussaa 2011 ), which deals with the case without superim- 

posed eigenstrain, the starting point for developing expressions for 

the Gibbs and Helmholtz potentials is the postulation of appropri- 

ate forms for them. Here, it is more straightforward to start with 

the postulation of constitutive relations, and then integrate them 

to obtain expressions for the potentials. The constitutive relations 

are 

ε = M (T ) σ + m (T ) , (6) 

m (T ) = m th (T ) + m ∗, (7) 

where m is the total eigenstrain, m th is the thermal eigenstrain, 

and m ∗ is the superimposed eigenstrain, which is assumed not to 

depend on T and whose physical origin is irrelevant to the analy- 

sis. The linear stress-strain relationship (6) , the additive decompo- 

sition (7) , and the compliance tensor dependence on the tempera- 

ture but not on the superimposed eigenstrain are the core assump- 

tions of the constitutive model. These are common assumptions in 

the framework of small strains. 

3.1. Gibbs potential 

In view of the stress-strain relation (6) , integrating (4-1) gives 

g( σ, T ) = −1 

2 

σ · M (T ) σ − m (T ) · σ + φ(T ) , (8) 

where φ is a function of the temperature alone. From (3-2), (4-2) 

and (8) , one can relate φ to C σ as follows: 

C σ ( σ, T ) = T 

(
1 

2 

σ · d 2 M 

dT 2 
σ + 

d 2 m 

dT 2 
· σ − d 2 φ

dT 2 

)
. (9) 

Writing this equation for σ = 0 , dividing both sides by T , and in- 

tegrating the resulting equation twice with respect to temperature 

gives 

φ(T ) = −
∫ T 

T 0 

(∫ ξ

T 0 

C σ ( 0 , ν) 
dν

ν

)
dξ

−( T − T 0 ) η0 + g 0 , (10) 

where T 0 is an arbitrary temperature, and η0 and g 0 are the en- 

tropy and the Gibbs potential in the state characterized by σ = 0 

and T = T 0 , respectively. 

Substituting (10) back into (8) gives the desired expression for 

the Gibbs potential: 

g( σ, T ) = −1 

2 

σ · M (T ) σ − m (T ) · σ

−
∫ T 

T 0 

(∫ ξ

T 0 

C σ ( 0 , ν) 
dν

ν

)
dξ

− ( T − T 0 ) η0 + g 0 . (11) 
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