
Mechanics of Materials 109 (2017) 18–25 

Contents lists available at ScienceDirect 

Mechanics of Materials 

journal homepage: www.elsevier.com/locate/mechmat 

Continuous gradient and discretized layered designs for control of 

stress wave scattering 

Alireza V. Amirkhizi 

Department of Mechanical Engineering, University of Massachusetts, Lowell, 1 University Avenue, Lowell, MA 01854, USA 

a r t i c l e i n f o 

Article history: 

Received 17 January 2017 

Available online 24 March 2017 

Keywords: 

Non-reflective layer 

Graded media 

Micro-structured materials 

Inverse scattering 

a b s t r a c t 

The scattering of stress waves in graded media is discussed in this paper using a conversion of the het- 

erogeneous wave equation to a potential form. In this form, the scattering and inverse scattering methods 

of mathematical physics can be used with proper enforcement of the boundary conditions on the me- 

chanical quantities, i.e. displacements and tractions. Two approaches for design of non-reflective media 

are analyzed, one for all frequencies with infinite thickness, and one with finite thickness for a target 

frequency range. In the latter approach, the transformed potential is set to zero, and the wave speed 

can have almost any desired profile, from which the profile of impedance is derived. The dispersive be- 

havior of the finite thickness design is studied. Finally, an example is discussed in which a continuous 

non-reflective profile is discretized to a piece-wise constant profile and the effect of such unavoidable 

practical constraints on the scattering of the designed layer is shown to be minimal. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recent developments in the theory of micro-structured media 

particularly combined with advances in manufacturing complex 

shapes at various length scales (e.g. 3D printing, self-assembly) 

has led to design of devices and structures with multiple levels 

of heterogeneities. The interaction of waves in optics, electromag- 

netism, acoustics, and solid mechanics with a body that may be 

homogenized at the micro-scale, but has gradually changing prop- 

erties, requires solutions of heterogeneous wave equation with 

constitutive properties that are potentially more complex than 

naturally occurring materials. The term “Transformation Optics”

was coined after various researchers such as Leonhardt (2006) and 

Pendry et al. (2006) proposed cloaking and other scattering 

control mechanisms by transforming the wave equation using 

a coordinate system defined by the constitutive tensors. The 

concept has been extended to acoustics and elastodynamics by 

Milton et al. (2006) , Norris (2008) and Norris and Shuvalov (2011) . 

The practical applications have also been demonstrated, e.g. 

see Driscoll et al. (2006) , Schurig et al. (2006) , Wheeland 

et al. (2012) and Zigoneanu et al. (2014) and references therein. 

The analysis of wave propagation in heterogeneous media has a 

much longer history. The monograph by Brekhovskikh (1980) fo- 

cuses on layered media, which are also of particular importance 

in earth sciences. One approach to address the mathematical 

E-mail address: alireza_amirkhizi@uml.edu 

difficulty of solving a PDE with spatially varying coefficients is to 

replace them with small perturbations on top of average values. 

This approach loses its utility away from the long wave length 

limit. An alternative is to change the spatial variables in such 

a way that the PDE ends up with constant coefficients but the 

heterogeneity is manifested in what mathematically may be con- 

sidered an inhomogeneous source term for the PDE. In physics this 

is simply considered a potential. This approach has been utilized in 

this paper and in fact one can find the general structure in many 

classical sources, such as Brekhovskikh (1980) . Such an approach 

is also very closely related to Transformation Optics/Acoustics 

formalism in the sense that the coordinate transforms are defined 

by the material constitutive parameters. Here, however, we focus 

on the appearance of the potential term. The transformed equation 

matches exactly with the time-independent Schrödinger equation, 

except for the fact that the boundary and jump conditions are 

naturally written for the mechanical quantities in the original 

equation. In the new, transformed, formulation, the new variables 

show up in the boundary and jump conditions in an elaborate 

form to match the physical requirement of the original quantities, 

i.e. displacement and traction. Nevertheless, the potential form 

enables the use of essentially the entire arsenal of theory of 

scattering in quantum mechanics. In this paper we focus on using 

certain elegant tools and solutions from inverse scattering theory, 

the main problem of which is to reconstruct the potential from the 

observed scattering response. The physical problem was discussed 

by Jost and Kohn (1952) and Levinson (1953) to relate the phase 

changes (considering the amplitude in spherically symmetric 1D 
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conservative scattering is preserved) to the shape of the potential, 

while the mathematical problem was solved rigorously by Gel’fand 

and Levitan (1955) and Agranovich and Marchenko (1964) . Exten- 

sive development of the subject is summarized by Faddeyev and 

Seckler (1963) . In this paper we show how Marchenko’s approach 

can be used to find non-reflective gradient designs for stress 

waves, similar to but also extending the one proposed for electro- 

magnetic waves using dielectric layers by Kay and Moses (1956) . 

This paper is structured as follows. First we discuss the formalism 

for transformation of heterogeneous wave equation to a potential 

form. Then, we discuss the all-frequency non-reflective design 

mentioned above. We then show the utility of the potential form 

by producing a family of finite thickness non-reflective designs, 

and explore the frequency dependence of scattering when the 

design is derived for a single central frequency point. Finally, we 

address the practical question of discretization of a continuous 

gradient design and its effect on scattering response. 

2. Conversion of elastic 1D wave equation with spatial 

variation of coefficients to potential form 

Consider a time-harmonic displacement U(x, t) = � (u (x ) e −iωt ) 

and write the elastic 1D wave equation as, 

L [ u ] = 

1 

ρ(x ) 

d 

dx 

(
E(x ) 

du 

dx 

)
+ ω 

2 u = 0 . (1) 

A general combined transformation, scaling both the dependent 

and independent variables u and x to ν and ξ , respectively, is 

written as 

u ( x ) = χ( x ) ν( x ) , (2) 

x = ϕ ( ξ ) . (2) 

It is possible to find a transformation that would eliminate the 

first order derivative term in the resulting equation and make the 

coefficient of the second order derivative equal to one, while only 

adding a multiplicative potential term to the zeroth order term, 

as in the potential term in Schrödinger equation. It is actually 

possible to achieve this in two separate steps, first variation of the 

coordinate and then variation of parameter. To start use x = ϕ(ξ ) 

such that d x/d ξ = c(x ) = c(ϕ(ξ )) , where (c(x )) 2 = E(x ) /ρ(x ) . 

This is essentially a switch to the characteristic coordinate. In 

the following, for the sake of simplicity, we take c ( x ) to be real 

and positive. Although most of the following process may be 

carried out in the general case, many simplifications are enabled 

by this assumption. For more on such transformation without this 

conditions, see Brekhovskikh (1980) . The new coordinate is then: 

ξ = ϕ 

−1 (x ) = 

∫ x dx ′ 
c(x ′ ) . (3) 

In the following we tentatively assume that c and Z = E/c = ρc

satisfy conditions to make this procedure applicable, except at 

a finite number of points. For example, we assume that c does 

not change its sign or vanish within the heterogeneous layer. 

Although it is possible to consider procedures to remove this 

restriction at a finite number of points (e.g. switching between the 

two characteristics to ensure ξ is monotonically increasing along 

with asymptotic or boundary analysis when c → 0), we leave 

this analysis for specific designs. The continuity conditions on the 

impedance are slightly stronger as will be seen below. With this, 

the differential operator may be written as: 

L [ u ] = 

1 

ρ(x ) 

d 

dx 

(
E(x ) 

du 

dx 

)
+ ω 

2 u 

= 

1 

ρc 

d 

dξ

(
E 

c 

)
du 

dξ
+ 

E 

ρc 2 
d 2 u 

dξ 2 
+ ω 

2 u 

= 

(
1 

Z 

dZ 

dξ

)
du 

dξ
+ 

d 2 u 

dξ 2 
+ ω 

2 u 

= ζ (ξ ) 
du 

dξ
+ 

d 2 u 

dξ 2 
+ ω 

2 u, (4) 

where ζ (ξ ) = dZ/Zdξ = d ln Z/dξ is the logarithmic derivative of 

the impedance Z . 1 To remove the first order term, we now use 

variation of parameter: 

L [ u ] = ζχ ′ ν + ζχν ′ + χ ′′ ν + 2 χ ′ ν ′ + χν ′′ + ω 

2 χν = 0 , 

where ′ represents differentiation with respect to ξ . Therefore, ν , 

satisfies 

d 2 ν

dξ 2 
+ (ω 

2 − V (ξ )) ν = 0 , (5) 

with 

V (ξ ) = − 1 

χ
(χ ′′ + ζχ ′ ) 

provided that 

2 χ ′ + ζχ = 0 . 

Clearly any χ = CZ −1 / 2 is a solution of this equation, in which case 

V (ξ ) = 

2 Z Z ′′ − Z ′ 2 
4 Z 2 

= 

d 2 Z 1 / 2 /dξ 2 

Z 1 / 2 
. (6) 

In the above derivation, a finite number of discontinuities in ζ
should be treated separately. Specifically, at the material discon- 

tinuity boundaries, the continuity of displacement u and stress 

Edu / dx are transformed to the continuity of 

Z −1 / 2 ν, (7) 

Z −1 / 2 (Z ν ′ − Z ′ ν/ 2) . (8) 

If Z and Z ′ are continuous and Z � = 0, this is equivalent to conti- 

nuity of ν ′ , and the transformed quantities are ruled by the same 

conditions as one might find applicable to the physical potential 

form of the wave equation. If Z has discontinuity, they enforces 

finite jump conditions on ν and ν ′ . 
The benefit of this transformation is that it makes possible 

the use of all the analytical and approximate methods devised 

in dealing with scattering from general potentials in physics 

and quantum mechanics. Inverse scattering methods have been 

routinely used to calculate the shape of potentials causing them, 

and therefore leading to information about quantum particles; 

See for example Kirst et al. (1989) . In a design problem, desired 

scattering amplitudes and phases may be similarly used to derive 

the potential that will produce them. The above method allows 

constructing the profiles of constitutive properties compatible with 

such a potential and therefore the desired scattering response. The 

two distinctions to have in mind are (a) modified boundary and 

interface conditions and (b) the actual realizability of such designs 

in terms of extreme constitutive parameters that may be required, 

size of such structure, and deviations from the ideal response due 

to a discretized, piece-wise constant fabrication. The former issue 

is only an additional mathematical step, while the latter is studied 

in the following examples. 

1 Since we are using a harmonic form, all results apply to complex-valued Z . 

Alternatively, to limit to real-valued constitutive parameters, one may simply use 

forms such as ln | Z | or | Z| −1 / 2 , whenever necessary. 
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