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a b s t r a c t 

The analysis and the synthesis of the nonlinear effective response of particulate composite materials are 

of great importance for developing new systems such as nonlinear elastic and electromagnetic metama- 

terials, nonlinear waveguides, nonlinear magnetoelectric devices and photonic or phononic crystals. Typ- 

ically, classical homogenization schemes take into account the shape of the inhomogenieties but neglect 

the spatial correlation among them, a crucial feature for the above applications. In this paper we develop 

a nonlinear homogenization technique for dispersions of nonlinear particles in a linear matrix, which is 

able to take account of spatial correlation by means of the so-called ellipsoidal microstructure. While the 

linear result corresponds to the well known Ponte Castañeda–Willis estimate, we propose new formulae 

for the second and third order nonlinear behavior. We finally show applications to the nonlinear elastic 

Landau coefficients and to the nonlinear hypersusceptibility of transport processes. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent times, a great number of investigations have been de- 

voted to the elastic and electromagnetic nonlinear properties of 

particulate composite materials in view of their applications to 

modern nanotechnology. In fact, the physical nonlinearity of some 

elements composing a structured system allows for generating a 

tunable complex behavior, which may exploited to implement spe- 

cific functions not existing in simple materials. For instance, effi- 

cient acoustic diodes have been designed by means of highly non- 

linear elastic materials combined with one-dimensional phononic 

crystals ( Liang et al., 2009, 2010 ) and they can be profitably ex- 

polited for thermal management at a microscopic scale ( Li et al., 

2012 ). The practical realization of these devices needs elastic ma- 

terials with precisely tuned strong nonlinearities that can be ob- 

tained either through bubbly liquids with optimized concentra- 

tion of gas ( Liang et al., 2010 ) or soft materials (polymers) with 

pores ( Brunet et al., 2013 ). Another emerging field is represented 

by the nonlinear acoustic metamaterials, which are able to con- 

trol several features of propagating elastic waves ( Herbold and 

Nesterenko, 2013; Manktelow et al., 2011; Kim et al., 2015 ). The 

elastic behavior can be coupled with the magnetic one, thus gen- 
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erating magnetoelastic metamaterials, where a new type of nonlin- 

ear response arises from this interaction ( Lapine et al., 2012 ). One 

more example of nonlinear media is given by the granular crys- 

tals, which are capable of generating shock-absorbing materials, 

sound-focusing devices, acoustic switches, and other exotic devices 

( Porter et al., 2015; Lydon et al., 2015 ). Similar effects were stud- 

ied in electrodynamics and optical diodes, transistors and other de- 

vices have been realized through non-linear electromagnetic com- 

ponents based on photonic crystals ( Mingaleev and Kivshar, 2002; 

Soljacic and Joannopoulos, 2010 ). Also, the development of nonlin- 

ear electromagnetic metamaterials and plasmonic devices allowed 

to tune electromagnetic properties with the possibility of control- 

ling the effect of specific nonlinearities ( Mary et al., 2008; Kozyrev 

and van der, 2008; Xu et al., 2009; Lapine et al., 2014 ). Other 

largely investigated structures include nonlinear photonic crystals 

( Berger, 1998 ), nonlinear optical waveguides ( Tsang and Liu, 2008 ) 

and nonlinear magnetoelectric devices Rose et al. (2012) . 

All these applications prove the need of designing hetero- 

geneous materials with controlled elastic and electromagnetic 

nonlinearities. To do this, we require efficient models to pre- 

dict the nonlinear behavior of composites as a function of their 

morphology. This task is usually performed by linear and non- 

linear homogenization methods, which determine the effective 

physical properties of a given microstructure ( Nemat-Nasser and 

Hori, 1993; Milton, 2002; Torquato, 2002; Kanaun and Levin, 

2008 ). Most of the homogenization techniques consider parallel 

or random orientation of the inhomogeneities, without taking into 
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account their real spatial distribution. They have been developed 

for dealing with, e.g., ellipsoidal particles ( Kachanov and Sevos- 

tianov, 20 05; Giordano, 20 03, 20 05 ), cracks ( Kachanov, 1994; 

Giordano and Colombo, 20 07b, 20 07a ), and poroelastic materials 

( Berryman, 1997; Dormieux et al., 2002 ). The classical linear 

theory used for considering the spatial distribution of particles 

(i.e. their spatial correlation) is based on the Ponte Castañeda–

Willis estimate, which takes into account the so-called ellipsoidal 

microstructure ( Ponte Castañeda and Willis, 1995 ). This result has 

been derived by considering the Hashin-Shtrikman variational 

approach in the form developed by Willis (1977 , 1978) . While 

in its original form the inclusion shape and spatial distribution 

are considered jointly ( Willis, 1977 ), in the second version these 

two features are introduced separately ( Willis, 1978 ). This point 

is crucial to derive the Ponte Castañeda–Willis estimate, which 

considers arbitrary ellipsoidal particles and, independently, as- 

sumes the hypothesis of ellipsoidal symmetry for the spatial 

distribution of the particles. The result represents a generalization 

of the classical Mori and Tanaka ’s (1973) scheme, always giving 

tensors of effective moduli satisfying the necessary symmetry 

requirements ( Ponte Castañeda and Willis, 1995 ). The relation 

between the Ponte Castañeda–Willis and Mori–Tanaka schemes 

has been thoroughly examined in the literature ( Hu and Weng, 

20 0 0b, 20 0 0a; Weng, 2010 ). From the point of view of the ap- 

plications, the Ponte Castañeda–Willis estimate has been used to 

investigate the mechanical properties of multifractured materials 

( Dormieux and Kondo, 2016 ), nanocomposites ( Cauvin et al., 

2010 ), rocks ( Wendt et al., 2003; Gruescu et al., 2007 ), and the 

response of magnetostrictive ( Galipeau and Ponte Castañeda, 

2012 ) or magneto-electro-elastic composites ( Franciosi, 2013 ). It is 

important to remark that the variational principles have been also 

used for nonlinear composites with both nonlinear comparison 

solid ( Talbot and Willis, 1985, 1987 ) and linear comparison solid 

( Ponte Castañeda, 1991, 1992; Suquet, 1993; Ponte Castañeda and 

Suquet, 1998 ). 

In this paper, we approach the problem of determining the 

nonlinear effective properties of a composite materials described 

by the so-called ellipsoidal microstructure or, equivalently, by the 

ellipsoidal symmetry for the spatial distribution of particles. It 

means that the microstructure can be described by a population 

of arbitrary ellipsoidal particles exhibiting a specific nonlinearity, 

embedded in a linear matrix with a spatial distribution given by 

an arbitrary ellipsoidal correlation. By introducing a two-step mul- 

tiscale procedure we can obtain the linear and nonlinear (second 

order and third order) physical properties of the heterogeneous 

material. We take into account ellipsoidal inhomogeneities of ar- 

bitrary shape and an arbitrary ellipsoidal correlation among par- 

ticles. This allows to write the final linear and nonlinear effec- 

tive properties in terms of two independent Eshelby tensors de- 

scribing shape and distribution, respectively. The linear result coin- 

cides with the Ponte Castañeda–Willis estimate whereas the closed 

form expression for the nonlinear effective tensor represents a new 

achievement, which is explicit and well suited for the applications. 

We remark that all results can be also used in dynamic regime if 

we consider the wavelength of the propagating wave much larger 

than the particles size. In this case we are working in the so- 

called quasi-static regime and any inhomogeneity feels a nearly 

static applied field. Interestingly enough, although we show ex- 

plicit examples analysing elastic and transport properties, the pro- 

posed scheme can be easily adopted to homogenize the fully cou- 

pled thermo-magneto-electro-elastic case as well. 

The proposed methodology can be adopted for modeling novel 

composites behaviors but also for validating advanced numerical 

models and multiscale techniques largely used for the description 

of materials with random microstructure. Usually, these method- 

ologies are based on boundary value problems defined on finite- 

Fig. 1. Distribution of particles embedded in the matrix L (1) showing the so-called 

ellipsoidal microstructure. Each nonlinear inhomogeneity (region �) has a volume 

v i = mes (�) , an Eshelby tensor S and a stiffness tensor ˜ L (2) (ε tot ) . Moreover, all 

particles are surrounded by a security ellipsoidal surface �d , having volume v d and 

Eshelby tensor S d . 

size mesoscales ( Ghosh, 2011; Salmi et al., 2012 ), sometimes gen- 

eralized to consider non-classical materials such as, e.g., microp- 

olar continua ( Trovalusci et al., 2014, 2015 ). The central issue of 

these approaches, applied to random microstructures, concerns the 

proper definition of Representative Volume Element (RVE) ( Ostoja- 

Starzewski, 2006 ). Since the proposed model, being entirely theo- 

retical, does not require the RVE estimation, the comparison with 

numerical approaches can be useful to further validate the RVE se- 

lection process. 

The structure of the paper follows. In Section 2 , we introduce 

the problem statement, by defining the ellipsoidal microstructure 

and the related nonlinear homogenization issues. In Section 3 , we 

review the Eshelby formalism for both linear and nonlinear inho- 

mogeneities. In Section 4 , we approach the first step of the multi- 

scale procedure: we solve the homogenization problem for a non- 

linear composite ellipsoid. In Section 5 , we elaborate the second 

step of the homogenization: we determine the effective behavior of 

the dispersion of nonlinear inhomogeneities. In Section 6 , we com- 

bine the two procedure in order to get the final results. Finally, in 

Sections 7 and 8 we show some applications to the second order 

nonlinear elastic Landau coefficients and to the third order nonlin- 

ear hypersusceptibility of transport processes. 

2. Problem statement 

We define here the microstructure and the methodology 

adopted in this work. The geometry of the system is represented 

in Fig. 1 , where a population of inhomogeneities are dispersed in 

a linear matrix of stiffness L 

(1) . Each nonlinear inhomogeneity is 

characterized by an ellipsoidal region �, a volume v i = mes (�) , 

and an Eshelby tensor S . Its nonlinear elastic response is charac- 

terized by a strain-dependent stiffness tensor ˜ L 

(2) (ε tot ) . Moreover, 

every particle is surrounded by another ellipsoidal surface �d , hav- 

ing internal volume v d and Eshelby tensor S d . This is the so-called 

security surface and allows us to define the ellipsoidal symmetry 

for the spatial distribution of particles: the security regions of any 

couple of inhomogeneities cannot be overlapped. This principle im- 

poses the spatial correlation among particles and may generate a 

form of anisotropy induced by the distribution of particles position. 

Indeed, even if we consider spherical inhomogenities, the overall 

behavior of the heterogeneous material will be anisotropic if the 

security surface are ellipsoidal. 

It is important to remark that the (centres of the) inhomo- 

geneities are uniformly randomly distributed within the material 

volume, provided that they are not overlapping (the composite is 

statistically homogeneous). It means that the probability density 

for finding an inclusion at a given position is a constant. However, 
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