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a b s t r a c t 

The elasticity-based, locally-exact homogenization theory for periodic materials with hexagonal and 

tetragonal symmetries is extended to accommodate linearly viscoelastic phases via the correspondence 

principle. The theory employs Fourier series representations for fiber and matrix displacement fields in 

the cylindrical coordinate system that satisfy exactly equilibrium equations and continuity conditions in 

the interior of the unit cell. The inseparable exterior problem requires satisfaction of periodicity condi- 

tions efficiently accomplished using previously introduced balanced variational principle which ensures 

rapid displacement and stress field convergence in the presence of linearly viscoelastic phases with rela- 

tively few harmonic terms. The solution’s stability and efficiency, with concommitant simplicity of input 

data construction, facilitate rapid identification of the impact of phase viscoelasticity and array type on 

homogenized moduli and local fields in wide ranges of fiber volume fraction. We illustrate the theory’s 

utility by investigating the impact of fiber array type and matrix viscoelastic response (constant Poisson’s 

ratio vs constant bulk modulus) on the homogenized response and local stress fields, reporting previ- 

ously undocumented differences. Specifically, we show that initially small differences between hexagonal 

and square arrays are magnified substantially by viscoelasticity. New results on the transmission of ma- 

trix viscoelastic features to the macroscale are also generated in support of construction of homogenized 

viscoelastic functions from experimental data. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The increasing usage of polymeric matrix composites in ap- 

plications ranging from aerospace, automotive and civil engineer- 

ing to bioengineering necessitates the development of predictive 

tools that gauge their long-term behavior. Such knowledge is key 

to durable and sustainable structural component designs. Poly- 

meric matrix composites exhibit creep and stress relaxation phe- 

nomena which need to be understood in order to design durable 

composite-based components. For instance, time-dependent stress 

redistribution in a laminated composite plate due to combined 

stress and relaxation phenomena may lead to local ply-level fail- 

ure, producing stress transfer leading to local failure at another lo- 

cation, and so on. Characterizing time-dependent response of poly- 

meric matrix composites may be accomplished through experi- 

ment. This, however, is time-consuming and costly, and hence typ- 

ically conducted for a chosen material system with a specific fiber 

volume fraction. 

The alternative to testing is the use of homogenization tech- 

niques to characterize the time-dependent response of different 
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fiber/matrix combinations in a wide fiber volume fraction range, 

validated experimentally against specific material combinations. 

The simple geometric micromechanics models of unidirectional 

composites based on a single fiber embedded in the matrix phase, 

such as the CCA (composite cylinder assemblage), Mori-Tanaka 

and GSC (generalized self-consistent) models, which may in turn 

be embedded in the homogenized medium of sought properties, 

( Christensen, 1979 ), yield estimates of homogenized moduli but 

typically do not provide accurate estimates of stress fields that 

account for adjacent fiber interaction. This may be obtained us- 

ing numerical or semi-analytical approaches such as the finite- 

element or finite-volume methods, cf., Pindera et al. (2009) and 

Charalambakis (2010) . These methods provide the means of mod- 

eling complex microstructure composites, but demand substan- 

tial training on the user’s part as well as time-consuming input 

data construction. Hence interest in elasticity-based homogeniza- 

tion methods for periodic microstructures, see the seminal work 

of Nemat-Nasser et al. (1982) which has motivated current de- 

velopments of the eigenstrain expansion technique, has revived 

within the past 15 years, cf. Wang et al. (2005) , Drago and Pin- 

dera (2008) , Mogilevskaya et al. (2010) , Sevostianov et al. (2012) , 

Guinovart-Díaz et al. (2013) , Caporale et al. (2015) , Wang and Pin- 

dera (2015; 2016) . The construction of input data for use with 

these techniques is at least an order of magnitude faster relative 
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to numerical methods, and the execution time is comparable if not 

faster. 

Extensive literature exists that addresses finite-element based, 

and more recently finite-volume based, homogenization of com- 

posite materials containing elastic, elastic-plastic and visco-plastic 

phases. Substantially fewer contributions are found dealing with 

viscoelastic response of polymeric matrix composites. The ap- 

proaches employed for this class of composites include the CCA 

model, ( Hashin et al., 1987 ); Mori-Tanaka method, ( Li et al., 

2006 ); spring models, ( Yancey and Pindera, 1990; Jeon and Mu- 

liana, 2012 ); Fourier series-based eigenstrain expansion technique, 

( Luciano and Barbero, 1995; Caporale et al., 2013 ); asymptotic ho- 

mogenization, ( Andrianov et al., 2011 ); and finite-volume tech- 

nique, ( Cavalcante and Marques, 2014 ). Fewer contributions still 

may be found that are based on the elasticity approach for periodic 

composites containing strictly elastic phases within square, hexag- 

onal and tetragonal unit cell architectures, already demonstrated 

to be an attractive alternative to variational homogenization tech- 

niques for this class of problems. 

Herein, the elasticity based locally-exact homogenization theory 

proposed by Drago and Pindera (2008) for rectangular and square 

periodic microstructures, and Wang and Pindera (2015) for hexag- 

onal arrays with transversely isotropic phases, is further extended 

to accommodate linearly viscoelastic phase response via the corre- 

spondence principle. The theory differs from other elasticity-based 

solutions of the local unit cell problem such as the eigenstrain 

expansion technique, ( Caporale et al., 2015 ), the equivalent ho- 

mogeneity method, ( Mogilevskaya et al., 2010 ), or the eigenfunc- 

tion expansion technique, ( Sevostianov et al., 2012 ), in the man- 

ner of periodic boundary conditions implementation based on a 

balanced variational principle. This variational principle produces 

rapid convergence of the displacement field which satisfies ex- 

actly the Navier’s equations and interfacial continuity conditions in 

the interior of the unit cell representative of rectangular, square 

or hexagonal periodic arrays of transversely isotropic inclusions. 

As a result, converged homogenized moduli and local stress fields 

alike are obtained with relatively few terms in the displacement 

field representation. The extended locally-exact homogenization 

theory that accommodates linearly viscoelastic phases is demon- 

strated herein to exhibit convergence of both homogenized relax- 

ation moduli (or creep compliances) and local stress fields which 

is just as rapid. 

Section 2 describes the locally-exact homogenization theory’s 

extension which is validated in Section 3 . In Section 4 we in- 

vestigate the combined effects of array type and phase relaxation 

moduli on the homogenized viscoelastic response and local stress 

fields, reporting new results, as well as the transmissibility of 

phase response across scales which is useful in the construction of 

homogenized response functions from experimental data. Specif- 

ically, we address the question whether the homogenized creep 

compliance elements of a unidirectional composite comprised of 

a viscoelastic matrix that exhibits power-law creep also exhibit 

power-law creep response in a wide range of fiber volume frac- 

tions. Conclusions are presented in Section 5 . 

2. Locally-exact homogenization via correspondence principle 

We employ the elastic-viscoelastic correspondence principle to 

transform the solution for the unit cell problem obtained using 

the locally-exact homogenization theory for periodic composites 

with transversely isotropic elastic phases to the viscoelastic solu- 

tion in the Laplace transform domain, cf. Christensen (1971) and 

Tschoegel et al. (2002) . Then we use an efficient inversion method 

proposed by Zakian (1969) , see also Halsted and Brown (1972) , to 

obtain the solution for the homogenized relaxation moduli and 

creep compliances in the time domain. The alternative approach 

Table 1 

Complex coefficients employed in Zakian’s inversion formula, Eq. (6) , 

from Laplace transform to time domain. 

j K j αj 

1 −36902 . 08210 + 196990 . 4257 i 12 . 83767675 + 1 . 666063445 i 

2 +61277 . 02524 + 95408 . 62551 i 12 . 22613209 + 5 . 012718792 i 

3 −28916 . 56288 + 18169 . 18531 i 10 . 93430308 + 8 . 409673116 i 

4 +4655 . 361138 − 1 . 901528642 i 8 . 776434715 + 11 . 92185389 i 

5 118 . 7414011 − 141 . 3036911 i 5 . 225453361 + 15 . 72952905 i 

is to solve the problem in the time domain directly, as for in- 

stance done by Cavalcante and Marques (2014) using the general- 

ized FVDAM theory. The advantage of the present approach is that 

it applies to viscoelastic functions with non-separable and separa- 

ble kernels alike. The approach, however, depends on the accuracy 

and efficiency of the chosen Laplace inversion scheme which the 

Zakian method affords, ( Hassanzadeh and Pooladi-Darvish, 2007 ). 

The transformed problem is obtained by replacing the dis- 

placement, strain and stress variables in the elastic solution by 

their Laplace transforms, u i → ˆ u i (s ) , ε i j → ˆ ε i j (s ) , σi j → ˆ σi j (s ) , and 

the elastic stiffness matrix elements by their Carson transforms 

C i jkl −→ s ̂  C i jkl (s ) , where 

ˆ C i jkl (s ) = 

∫ s 

0 

C i jkl (t) e −st dt (1) 

The solution to the unit cell problem in the Laplace-transform do- 

main yields Hill’s localization relations, ( Hill, 1963 ), between trans- 

formed average strains in the fiber and matrix phases (k = f, m ) 

and the transformed homogenized strains in the form 

̂ ε̄ 
(k ) = 

ˆ A 

(k ) ( s ̂  C 

( f ) , s ̂  C 

(m ) , υ f ) ̂
 ε̄ (2) 

which are employed in the construction of the homogenized 

Hooke’s law in the transformed domain. The specified macroscopic 

strain employed in the determination of the relaxation moduli is 

ε̄ (t) = H(t) ̄ε o whose Laplace transform is ̂  ε̄ (s ) = ε̄ o /s . The homog- 

enized Hooke’s law in the transform domain is obtained by aver- 

aging local constitutive equations in each phase, 

̂ σ̄= 

1 

V 

∑ 

k 

∫ 
s ̂  C 

(k ) ˆ ε (k ) dV k = 

∑ 

k 
υk s ̂  C 

(k ) ̂ ε̄ 
(k ) 

(3) 

where the phase volume fractions obey the relationship 

∑ 

k υk = 1 . 

Upon use of Eq. (2) , the homogenized relationship between stress 

and strain averages then becomes ̂ σ̄ = 

∑ 

k 
υk s ̂  C 

(k ) ˆ A 

(k ) ̂ ε̄ = s ̂  C 

∗̂ ε̄ (4) 

where ˆ C 

∗ = 

∑ 

k υk ̂
 C 

(k ) ˆ A 

(k ) . In light of the phase volume fraction re- 

lationship above, the homogenized relaxation functions for the unit 

cell in the Laplace transform domain may be written, 

ˆ C 

∗ = 

ˆ C 

(m ) + υ f [ ̂  C 

( f ) − ˆ C 

(m ) ] ̂  A 

( f ) (5) 

The inversion of the homogenized relaxation functions to the 

time domain is accomplished by dividing the desired time interval 

into increments t = [ t 1 , t 2 , t 3 , . . . , t N ] at which the unit cell prob- 

lem in the Laplace transform domain is solved through the assign- 

ment s ( j) = α j /t i for j = 1 , . . . , 5 , where the complex values of αj 

are given in Table 1 . The solution of the unit cell problem at the 

given time enables calculation of the strain concentration matrix 

for the fiber phase, ˆ A 

( f ) , in the above equation. The homogenized 

relaxation functions at the given time are subsequently calculated 

according to, 

C 

∗(t i ) = 

2 

t i 

∑ 5 

j=1 
Re [ K j ̂

 C 

∗(α j /t i )] (6) 

where the complex coefficients K j are included in Table 1 . The fol- 

lowing section provides an overview of the unit cell solution in 

the Laplace transform domain that enables calculation of the time- 

domain relaxation functions based on the above inversion method. 
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