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a  b  s  t  r  a  c  t

The  paper  deals  with  a direct approach  to homogenize  lattice  beam-like  structures  via eigen-  and  princi-
pal vectors  of  the  state  transfer  matrix.  Since  the  girders  unit  cells  transmit  two  bending  moments,  one
given  by  the  axial  forces,  the other  originated  by  nodal  moments,  the  Timoshenko  couple-stress  beam
is  employed  as  substitute  continuum.  The  main  advantage  of the  method  is  the  possibility  of  operating
directly  on  the  sub-partitions  of  the unit  cell  stiffness  matrix.  Closed  form  solutions  for  the  Pratt  and  X-
braced  girders  are  achieved  and  used  into  the  homogenization.  Unit  cells  with  more  complex  geometries
are  numerically  addressed  with  direct  approach,  showing  that  the  principal  vector  problem  corresponds
to  the  inversion  of  a well-conditioned  matrix.  Finally,  a validation  of  the  procedure  is carried  out  com-
paring  the  predictions  of  the  homogenized  models  with  the  outcomes  of  f.e. analyses  performed  on  a
series of  girders.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Periodic beam-like structures are receiving growing inter-
est from researchers and technicians from several engineering
areas. Their optimal trade-off between strength and stiffness,
joined with lightness, economy and manufacturing times are
the key aspects. Frequent applications in civil and industrial
buildings, naval, aerospace, railways and bridge constructions,
material design and bio-mechanics can be found [1–14]. Mod-
elling these structures with a 1D homogenized continuum model
has great utility in the real problems. While several micropo-
lar models have been reported for the analysis of planar lattices
and periodic micro-structures ([15–30], to cite a few), the stud-
ies on the micro-polar models for beam-like lattices have not
yet achieved the same advances. As far as the authors are
aware, only few papers have specifically addressed this topic
[31–34].

The present paper introduces a direct approach for the homog-
enization of periodic beam-like structures by the state transfer
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matrix eigen-analysis. So far, this methodology has been mostly
applied for the dynamic analysis of repetitive or periodic structures
([35–38], i.e.). Only recently, it has also been used for the elasto-
static analysis of prismatic beam-like lattices with pin-jointed
bars [39–41]. Its practical implementation is problematic since
the state transfer matrix G is defective and ill-conditioned. Force
and displacement transfer methods are presented in [40] to over-
come ill-conditioning. By them, a better conditioning is achieved
analysing the behaviour of a lattice of n identical cells. Since the
proposed method directly operates on the sub-partitions of the unit
cell stiffness matrix for searching the unit principal vectors of G,
all the drawbacks of the transfer methods till now proposed are
avoided. Closed form solutions for the unit cell force transmission
modes are obtained and used to determine the equivalent stiff-
nesses of simple girder geometries. The method is easily extended
to more complex unit cell geometries too: eigen- and principal vec-
tors of G are numerically determined. However, it is shown that
the eigen-/principal vector problem is always reduced to the inver-
sion of a well-conditioned 3 × 3 matrix. The accuracy of the results
relative to the homogenized beams in reproducing the behaviour
of real discrete beam-like structures is satisfactory. The proposed
method is finally assessed with a sensitivity analysis by a set of
finite element models.
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2. Direct approach

The unit cells of the analyzed girders are made up of two
straight parallel chords rigidly connected to the webs (see Fig. 1). All
the cell members are Bernoulli-Euler beams. The top and bottom
chords have the same section whose area and second order cen-
tral moment are named Ac and Ic . The girder transverse webs are
assumed axially inextensible to simplify the analysis. This is equiv-
alent to neglect the transverse elongation among the chords during
girder deformation. The cross area and the second order moment
of the diagonal members are Ad and Id, while Iw denote the sec-
ond order moment of the transverse webs. To account the girder
periodicity, the two vertical beams of the unit cell will have second
order moment equal to the half part of Iw .

To identify any static or kinematical quantity related to the
girder i-th nodal separating two contiguous cells the sub-script i
will be adopted, see Fig. 1d. The superscripts t or b are used to dis-
tinguish between the joints or nodes of the same section, depending
on whether the top or bottom chord is involved.

Finally, in a coherent manner, top and bottom nodes of the sec-
tion i are labelled it or ib. In what follows:

�ti = [ uti vt
i
ϕt
i ]
T

and �bi = [ ub
i

vb
i
ϕb
i

]
T

(1)

denote the displacement vectors of the joints it and ib, where
u(. )
i

andv(. )
i

are the displacement components of the joint i(. ) and

ϕ( .)
i

is the rotation. Therefore, the displacement vector of the nodal

section i is ıi = [ ıti
T ıbi

T ]
T
. Similarly, the nodal forces applied on

the cell joints i t and i b are:

pti =
[
Fti x, Fti y, mti

]T
and pbi =

[
Fbi x, Fbi y, mbi

]T
(2)

with F (. )
i x

andF (. )
i y

respectively the axial and transversal force com-

ponents and m(. )
i

the couple on the joint i (. ). Thus, the vector
of the nodal forces acting on the section i of the girder is: pi =
[ pt  T
i

pb T
i

]
T
. We  note that the positive components of pi are those

acting according the reference axis on the right side of the cell as
sketched in Fig. 1d. Thus, the cell i, bounded by the sections i − 1
and i respectively on the left and right sides will be loaded by the
nodal force vectors −pi−1 and pi.

The unit cells stiffness matrix K can be computed additively
by assembling the stiffnesses of the beam components through
the Boolean topological matrices as in the standard finite element
analysis.

For our purposes, it is more convenient to adopt static and
kinematic alternative quantities to the standard ones of Fig. 1d
and Eqs. (1) and (2). More precisely: mean axial displacement

ûj = 1/2
(
ut
j
+ ub

j

)
, section rotation  j =

(
ub
j

− ut
j

)
/lt (where lt is

the web length), transverse displacement v and finally the sym-
metric and anti-symmetric parts of the section nodal rotations

ϕ̂j = 1/2
(
ϕt
j
+ ϕb

j

)
and ϕ̃j = 1/2

(
ϕt
j
− ϕb

j

)
are considered.

The static quantities conjugates of the previous kinematic vari-
ables are: the axial force nj = (Fb

j
+ Ft

j
)/2, the bending moment

Mj =
(
Fb
j

− Ft
j

)
lt generated by the anti-symmetric axial forces, the

shear force Sj = Ft
j y

+ Fb
j y

, the resultant of the nodal moments m̂j =
mt
j
+ mb

j
and, finally, the difference between the same moments

m̃j = mt
j
− mb

j
.

The standard kinematic quantities �j can be expressed as func-

tions of the new ones dj = [ ûj  j vj ϕ̂j ϕ̃j ]
T through the

matrix equation �j = h dj , being:

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1/2 lt 0 0 0

0 0 1 0 0

0 0 0 1 1

1 1/2 lt 0 0 0

0 0 1 0 0

0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Denoting by fj = [ n̂j Mj Sj m̂j m̃j ]
T the vector of the alter-

native static quantities given by fj = hT pj, the unit cell stiffness
equation in terms of the variables d and f can be written, in a
partitioned form, as:[

−fi−1

fi

]
=

[
�ll �lr

�rl �rr

]  [
di−1

di

]
, (3)

where subscript l and r are used to denote the left and right side
of the unit cell and � = HTK H is the cell stiffness matrix, H being
the 10 × 12 diagonal block matrix having as principal elements the
5 × 6 h matrices.

The state vector s of a nodal cross section of the girder consists
of the displacements and forces vectors d and f. Hence, the state

vectors of the end sections of the i cell are si−1 = [ di−1
T fi−1

T ]
T

and si = [ di
T fi

T ]
T
. They are related by the transfer matrix G:

G si−1 = si , (4)

or equivalently:[
Gdd Gdf

Gfd Gff

]  [
di−1

fi−1

]
=

[
di

fi

]
(5)

As a consequence, the force transmission modes of the unit cell
are given by the unit principal vectors of the G matrix.

Ill-conditioning of G can be avoided either solving the eigen-
vectors problem in closed form or recasting this problem in
a numerically non-pathological alternative method. The direct

approach pursues this latter strategy. If se =
[
dTe , fTe

]T
is a unit

eigen-vector, it is transmitted unchanged through the cell. Fur-
thermore, the principal vector sp of the G matrix, generated by
the eigen-vector se is such that G sp = sp + se. Its displacement
and force sub vectors de and fe are thus linked through the sub-
partitions �ij of the stiffness matrix by the equations:[

−fp

fp + fe

]
=

[
�ll �lr

�rl �rr

]  [
dp

dp + de

]
(6)

These latter relations follow from the stiffness Eq. (5), by sub-
stituting the conditions:

di−1 = dp, fi−1 = fp,

di = dp + de, fi = fe + fp,

Adding term by term the two equations in (6), the next condition
for the unknown displacement vector dp is deducted:

fe = Adp + Bde (7)

with A = �ll + �lr + �rl + �rr and B = �lr + �rr . By a very similar
reasoning, it can be shown that unit eigen-values of G are such that:

Ade = 0. (8)
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