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a  b  s  t  r  a  c  t

A  uniform  elastic  cantilever  is  subjected  to a  uniformly  distributed  load  or a concentrated  load  at  its
tip.  The  angle  of  the  fixed  end  with  the  horizontal  is varied  until  the  maximum  horizontal  distance
(projection)  from  the fixed  end  to the  horizontal  location  of the  tip is  attained.  The  beam  is modeled  as
an  inextensible  elastica,  and numerical  results  are  obtained  with  the  use  of a shooting  method.  For  the
optimal  solution  (furthest  reach),  the tip is below  the  level  of  the  fixed  end.  Experiments  are  conducted
to  verify  the analysis  for a heavy  cantilever  (i.e., only  subjected  to  its self-weight).

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

A uniform, massless, cantilevered elastica with a concentrated
load at its tip was considered by Wang [1] and Batista [2]. For a given
value of the tip load, the angle of the fixed end with the horizontal
was computed for which the tip was at the same level as the fixed
end. The associated horizontal span was termed the “longest reach.”

In the present study, the restriction of equal end heights
is removed, and the maximum horizontal distance (projection)
between the fixed end and the tip is determined (see Fig. 1). Follow-
ing the terminology of Wei  et al. [3], this distance will be called the
“furthest reach.” The problem involves optimization of the angle
of the fixed end. A tip load is considered, and also a uniformly dis-
tributed load that could be the self-weight of the beam (i.e., a “heavy
beam”). In nondimensional terms, results for the optimal angle,
furthest reach, and corresponding tip deflection are presented.

Other papers analyzing large deflections of cantilevers under
such loads include Wang [4], Beléndez et al. [5], Wang et al. [6], and
Kimiaeifar et al. [7]. Applications of the problem considered here
include sensing of objects, with the use of flexible ‘whiskers’ (Zhao
and Rahn [8]; Zhu et al. [9], Iida and Nurzaman [10]; Lucianna et al.
[11]), cantilevers as in atomic force microscopy (AFM) (Bausells
[12]), and continuum manipulators (Gao et al. [13]).
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McMahon [14,15] was interested in the lengths of tree branches.
He conducted experiments in which uniform rubber cylinders of
different lengths were cantilevered horizontally and the length
yielding the furthest reach was  sought. In McMahon [16], the slope
(angle) of the cantilever at the fixed end was varied. An analysis was
carried out. For any given slope, again the beam length that maxi-
mized the lateral reach was  determined. The problem treated here
is different, with the length fixed and the optimal angle computed.

For the case of zero slope at the fixed end, Wei  et al. [3] found
the optimal distribution of material giving the furthest reach of a
heavy beam. At the tip, the optimal cross-sectional area was zero
and the beam pointed vertically downward. Plaut and Virgin [17]
treated a related problem, varying the material distribution and
minimizing the vertical tip deflection; a minimum cross-sectional
area was specified.

2. Formulation

The beam has length L and constant bending stiffness EI.  Points
on the beam have coordinates X(S) and Y(S), and rotation �(S) with
respect to the X axis, where S is the arc length from the fixed end.
The bending moment is M(S). Including both the tip load P and uni-
formly distributed load W,  the vertical internal force is P + (L − S)W.
The analysis is conducted in terms of the nondimensional quantities
�(s) and

x = X/L,y = Y/L,s = S/L,m = ML/(EI),p  = PL2/(EI),w = WL3/(EI)

(1)
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Fig. 1. Schematic of beam in optimal configuration.

Fig. 2. Optimal angle � as function of w.

Fig. 3. Furthest reach x max as function of w.

Fig. 1 shows the elastica in terms of these quantities. The angle
�(0) at the fixed end is denoted �. The governing equations are [18]

x′ = cos�,y′ = sin�, �′ = m,m′ = [p  + (1–s)w]cos�  (2)

Fig. 4. Tip deflection ytip as function of w.

Table 1
Numerical results for cantilever with uniformly distributed load.

w � xmax ytip xnode

0 0 1 0 –
2.5  0.3110 0.9931 −0.0005 0.9885
5  0.6130 0.9731 −0.0040 0.9542
7.5  0.8983 0.9422 −0.0127 0.9025
10  1.1615 0.9032 −0.0273 0.8401
12.5  1.3976 0.8590 −0.0492 0.7702
15  1.6060 0.8124 −0.0767 0.7001

The boundary conditions are x(0) = 0, y(0) = 0, �(0) = �, and
m(1) = 0. Numerical solutions are obtained using a shooting method
with Mathematica. The quantities p, w, and � are specified, and the
subroutines NDSolve and FindRoot are applied to vary m(0) until
m(1) = 0. The corresponding value of x(1) is found from the solution.
Then � is varied and the procedure is repeated until the maximum
value of x(1), called x max (i.e., the furthest reach), is attained.

When x(1) = xmax, it turns out that the tip of the cantilever is
below the level of the fixed end, i.e., y(1) < 0, and this value of y(1)
is denoted ytip.

3. Results for uniformly distributed load

The case p = 0 (no tip load) is considered in this section. Numer-
ical results are presented as solid curves in Figs. 2–4 for the range
0 ≤ w ≤ 15. In Fig. 2, the angle � that yields the furthest reach is
plotted as a function of the load (or self-weight) w. The slope of the
curve decreases slightly as w increases. For the massless, unloaded
cantilever (w = 0), the solution is the straight horizontal beam, with
� = 0, xmax = 1, and ytip = 0. An approximation for the optimal angle
is given by

� ≈ 0.1264 w − 0.0004868w2–0.00005376w3 (3)

The error in the approximation is less than 0.002 rad for the
range in Fig. 2.

In Fig. 3, the furthest reach x max is plotted as a function of w. The
slope of the curve decreases as w increases. Finally, in Fig. 4, ytip is
plotted as a function of w. Again the slope of the curve decreases as
w increases.

Numerical values are listed in Table 1 for w = 0, 2.5, 5, 7.5, 10,
12.5, and 15. The quantity xnode in the last column is the value of x
(within the span) where y = 0, as shown in Fig. 1.
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