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a  b  s  t  r  a  c  t

Despite  advances  in  contemporary  micromechanics,  there  is  a void  in  the literature  on a  versatile  method
for estimating  the  effective  properties  of  polycrystals  comprising  of  highly  anisotropic  single  crystals
belonging  to  lower  symmetry  class.  Basing  on  variational  principles  in elasticity  and  the Hill–Mandel
homogenization  condition,  we  propose  a  versatile  methodology  to fill  this  void.  It is demonstrated  that
the  bounds  obtained  using  the  Hill–Mandel  condition  are  tighter  than  the  Voigt  and  Reuss  [1,2]  bounds,
the  Hashin–Shtrikman  [3]  bounds  as  well  as  a recently  proposed  self-consistent  estimate  by  Kube  and
Arguelles  [4]  even  for polycrystals  with  highly  anisotropic  single  crystals.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Polycrystalline materials are widely used in engineering appli-
cations as the need to develop new materials with unique
properties has significantly increased (enhanced fracture tough-
ness [5], high thermal conductivity [6], superior electrical
conductivity [7]). These microstructures consist of collection of
single crystals with random orientations and individual grains
belonging to any crystal class (from cubic to triclinic). When these
crystals are oriented randomly, collectively they exhibit an effective
elastic behavior that is isotropic upon ensemble averaging. How-
ever, despite advances in contemporary micromechanics over the
past several decades, it is still a challenge to predict the effective
properties of such polycrystals especially when the single crys-
tals are highly anisotropic and have lower elastic symmetry (see
[8,9,4]).

In the past, several techniques have been used to predict the
elastic response of materials and some of these are noteworthy.
Voigt [1] developed the upper bound on the elastic moduli by
assuming uniform strain throughout the material. Along similar
lines, Reuss [2] obtained the lower bound on the aggregate response
by considering uniform stress in the composite. It was later demon-
strated by Hashin–Shtrikman [3] using variational principles that
the upper and lower bounds for the elastic moduli of polycrystals
can be tighter than the Voigt and Reuss bounds. Also, the authors
applied their approach to a two-phase alloy that had cubic sym-
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metry and illustrated that the theoretical results were in good
agreement with the experimental results. Several other authors
had employed Hashin–Shtrikman’s variational principles method
for polycrystals from various crystal classes. In particular, Watt and
Peselnick [10] demonstrated explicit expressions for the bounds on
the elastic moduli of polycrystalline aggregates composed of hexag-
onal, trigonal and tetragonal crystals. Also, the authors showed
that Hashin–Shtrikman bounds were within the Voigt and Reuss
bounds. Similarly, Berryman [11] developed analytical formulas in
order to obtain self-consistent estimates for the shear and bulk
moduli of random polycrystals with hexagonal, trigonal and tetrag-
onal symmetries. In addition, the author was  successful in obtaining
the self-consistent estimates within the Hashin–Shtrikman bounds
for all the crystal classes considered in that study.

An alternate approach for estimating the effective property is
the Mori–Tanaka method which relates the average stress in an
inclusion to the average stress in the matrix in multiphase compos-
ites. In particular, Norris [12] investigated two phase composites
and proved that the elastic moduli obtained using Mori–Tanaka
method always satisfied the Hashin–Shtrikman bounds. Also,
for spherical particles, it was demonstrated that the results for
the effective moduli of multiphase composites were within the
Hashin–Shtrikman bounds.

While several theories exist in the literature for determining
the elastic response of materials, somewhat tighter bounds for
elastic constants have only been recently obtained for microstruc-
tures with lower symmetry. In particular, Brown [13] illustrated a
numerical technique for obtaining the Hashin–Shtrikman bounds
for materials belonging to any crystal class. In that study, the author
estimated the Hashin–Shtrikman bounds as a function of the prop-
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Fig. 1. (a) Microstructure of a polycrystal with 10,000 grains. (b) Microstructure subjected to Dirichlet boundary condition. (c) Microstructure subjected to Neumann boundary
condition.

Table 1
Bounds (Voigt(V)–Reuss(R), Hashin–Shtrikman (HS), Dirichlet(d)–Neumann(t)) and self-consistent estimates (SC) of the shear (�) moduli (GPa)

Material AU �R �−HS �t Kube and
Arguelles [4], �SC

�d �+HS �V �SC−�t
�SC

× 100 �SC−�d
�SC

× 100

An96 (triclinic) 1.00 35.70 38.20 38.95 38.90 39.33 39.70 42.50 −0.13 −1.10
Tin  difluoride (monoclinic) 1.80 10.30 11.60 12.12 12.10 12.39 12.40 13.80 −0.15 −2.38
Ethylene diamine tartrate (monoclinic) 2.80 6.20 7.00 7.13 7.10 7.31 7.70 9.10 −0.47 −2.91
Oxalic acid dihydrate (monoclinic) 3.60 4.20 4.90 5.44 5.40 5.59 5.80 6.90 −0.82 −3.58
Lithium hydrogen oxalate monohydrate (triclinic) 4.50 11.50 14.00 15.17 15.00 15.73 16.90 20.10 −1.14 −4.84

Table 2
Bounds (Voigt(V)–Reuss(R), Hashin–Shtrikman (HS), Dirichlet(d)–Neumann(t)) and self-consistent estimates (SC) of the bulk (�) moduli (GPa)

Material AU �R �−HS �t Kube &
Arguelles [4],
�SC

�d �+HS �V �SC−�t
�SC

× 100 �SC−�d
�SC

× 100

An96 1.00 84.10 86.20 86.71 86.70 87.01 87.20 88.70 −0.01 −0.36
Tin  difluoride 1.80 16.50 17.10 17.36 17.30 17.44 17.50 17.90 −0.33 −0.81
Ethylene diamine tartrate 2.80 15.90 19.20 19.63 19.50 20.27 21.30 24.50 −0.64 −3.93
Oxalic acid dihydrate 3.60 10.80 11.90 12.46 12.40 12.70 13.00 14.30 −0.44 −2.44
Lithium hydrogen oxalate monohydrate 4.50 22.10 27.50 29.83 29.70 31.11 33.20 39.30 −0.44 −4.75

erties of a reference isotropic material and reported the results for
crystals with triclinic symmetry. Following Brown’s [13] compu-
tational procedure, Kube and Arguelles [4] developed theoretical
expressions for obtaining the self-consistent estimates of polycrys-
tals and illustrated an iterative approach to solve these expressions.
It was seen that the estimates can be obtained for a variety of geo-
logical materials that have monoclinic and triclinic symmetries.

In the present work, we illustrate an alternate method for
obtaining tighter bounds than Kube and Arguelles [4] using
the Hill–Mandel condition (see Hill [14] and Mandel [15]). This
approach has been widely used in the past few decades within
the context of elasticity [8,9,16,17], thermal conductivity [18–21],
thermoelasticity [22,23], electrical conductivity [24], fracture and
damage phenomena in random microstructures [25], flow in
porous media [26,27], viscoelastic materials [28] and nonlinear
elastic and inelastic materials [29–31]. Proceeding with this frame-
work, we analyze the mesoscale constitutive response of elastic
polycrystals with increasing length scales by applying bound-
ary conditions (displacement and traction) consistent with the
Hill–Mandel condition. In this approach, one requires the polycrys-
tals to be spatially homogeneous, ergodic and the applied boundary
conditions to be macroscopically uniform so that the aggregate
response is independent of the surface values of displacement and
traction. Therefore, the microstructure moves from being a statisti-
cal volume element (SVE) to a representative volume element (RVE)
with a growing length scale and the SVE’s response becomes inde-

pendent of the boundary conditions. Thus, displacement (Dirichlet)
and traction (Neumann) boundary value problems deliver rigor-
ous bounds on the effective elastic moduli from above and below,
respectively.

In the subsequent sections, we establish scale-dependent
bounds on the elastic response of random polycrystals with 10,000
grains which were generated using Voronoi Tessellations. By
analyzing stochastic boundary value problems (Dirichlet and Neu-
mann) consistent with the Hill–Mandel condition, we illustrate
that the aggregate response of polycrystals converge to the effec-
tive properties. Subsequently, tighter bounds are obtained than
the bounds and self-consistent estimates published in the litera-
ture by Voigt and Reuss [1,2], Hashin–Shtrikman [3] and Kube and
Arguelles [4].

2. Mathematical formulation

2.1. Hill–Mandel condition

In this section, we  illustrate the Hill–Mandel condition that
employs the energetic and mechanistic approaches for setting
up constitutive equations (see Hill [14] and Mandel [15]). Firstly,
we discuss the stress and strain fields (� and �) and decompose
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