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a  b  s  t  r  a  c  t

The  present  article  addresses  the  quantification  of damping  in a  parametric  pendulum,  with  a  view on  fur-
ther applications  in  the  design  of energy  harvesting  devices.  Detailed  new  experimental  data  is  obtained
for  such  purpose,  and  a novel  mathematical  model  is presented.  Linear  and quadratic  viscous  damping
and  also  dry  friction  are  taken  into  account.  To introduce  the  dry friction  component,  the  pendulum
axis  is  mounted  on  ball  bearings.  This  is considered  as  a very  realistic  situation  of  a  harvester.  Damp-
ing  parameters  are  determined  by  minimizing  the difference  between  numerical  and  experimental  time
histories.  It is shown  that the  damping  model  here  presented  is  more  adequate  to replicate  experiments
than  commonly  used  linear  models,  which  consider  only  a linear  viscous  damping  term  characterized  by
means  of free  decay  tests.  It  is  also  pointed  that  linear  models  are  not  adequate  for  refined  studies,  since
they  can  lead  to erroneous  predictions  of  rotation  zones,  and  consequently  to  wrong  considerations  in
the  design  of  pendulum  harvesters.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The growing global interest in clean energy has allowed the
development of many technologies aimed at energy harvesting
from ambient vibrations. This trend has led to review some well-
known mechanical systems in the search for suitable harvesting
devices. Based on the high kinetic energy available in its rotational
motion, the parametric pendulum is one of those systems recently
revisited [1–6]. The basic idea of the harvester consists of a pendu-
lum with a vertical motion induced by an ambient energy source. If
stable rotations are achieved, a generator attached to the pendulum
axis may  extract electrical energy. Two sources of ambient vibra-
tions are mainly thought as external excitation: one is the motion
of the sea waves, of stochastic nature; and the other is given by the
motion of steady vibrating machines, which is generally harmonic
and thus easily predictable. This predictability can be used in the
design of the pendulum harvester to improve its ability of achieving
rotations [7,8].

Damping is an important variable in the design of mechani-
cal harvesters due to its close relation with energy consumption
and consequently with efficiency of the system. In fact, it has been
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pointed out that energy cannot be extracted from a pendulum if
damping is very high [2]. It is common practice to assume a damp-
ing force due to air drag, which is defined as proportional to the
tangential velocity of the bob [2–11]. The proportionality constant
of this linear model is usually estimated from a free decay test,
assuming an exponential decay of amplitude. This choice is attrac-
tive because of its mathematical simplicity, but it is known since a
long time that linear damping often cannot represent accurately the
behavior of real pendulums [12–14]. This happens mainly because a
real pendulum involves sliding or rolling surfaces, such as ball bear-
ings, where Coulomb’s nonlinear dry friction cannot be neglected
[13]. Besides, if the motion of the pendulum happens at a high
Reynolds number, viscous friction may  include a quadratic term
[13,14] or it may  even be purely quadratic [15].

Following those somewhat old but consistent ideas, we  propose
a mathematical model of the parametric pendulum. To account dry
friction, the axis of rotation is assumed to be mounted on ball bear-
ings. We  consider this as a realistic situation for an energy harvester,
since ball bearings have a good balance between cost, maintenance
and friction [16,17]. Besides, linear and quadratic viscous friction
terms are also taken into account. The model is derived and tested
experimentally considering a reciprocating motion as a parametric
excitation. This motion can be found in a wide range of industrial
machines, including engines and pumps, where a crank-rod system
is used to convert circular motion into linear motion or vice versa.
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Nevertheless, the model here presented can be useful for any other
excitation of harmonic or stochastic nature. The study is focused on
rotational motion which is, as mentioned before, the desired steady
state of the pendulum for energy harvesting purposes.

Damping parameters are identified by solving an optimization
problem. Identification is based on the minimization of the mean
error between experimental data and numerical calculations of the
angular position of the pendulum bob. This technique is similar to
that used in reference [18], named Fitting Time Histories.

The article is organized as follows. After this introduction (Sec-
tion 1), we introduce the mathematical model (Section 2) and make
a description of the experimental device (Section 3). Then the objec-
tive function of the optimization problem is obtained (Section 4).
Finally, the results of the study are presented and discussed, focus-
ing on a comparison with a linear damping model (Section 5).

2. Mathematical model

The governing differential equation of the parametrically
excited pendulum can be set up by using Lagrange’s equation for
single-DOF non conservative systems. It is a second-order ordinary
differential equation given by

ml2�′′ + Tv + TC + ml
(
y′′ + g

)
sin � = 0, (1)

where m is the mass of the pendulum bob, l the distance between
the center of gravity and the axis of the pendulum, g the accel-
eration of gravity, y the vertical displacement of the axis, � is the
angle measured from the hanging position and Tv and TC are respec-
tively the viscous friction torque and the Coulomb’s friction torque.
Derivatives (•)′ are performed with respect to time �.

Let’s consider the schematic pendulum-shaker system of Fig. 1.
The connecting joint between rod and crank rotates at a constant
angular velocity �,  following a circumferential trajectory. Thus, the
displacement of that joint projected horizontally or vertically is
exactly sinusoidal in time. Now, the tilt angle of the rod is con-
tinuously varying during the cycle of motion. Therefore the linear
motion of the upper end of the rod is more complex than a sine func-
tion. This linear motion, then transmitted to the pendulum axis, is
given by

y = r
(

1 − cos ˝�
)

+ L
(

1 −
√

1 − �2 sin2˝�
)
, (2)

where r is the crank radius, L is the rod length and � = r/L is the
crank/rod ratio.

To determine the viscous damping torque Tv, a drag force has to
be established. It has been proposed that this force is neither linear
nor quadratic in velocity, but rather a combination of the two  [14].
Thus, it seems reasonable to define the drag force as Fv = aV2 + bV,
where V is the magnitude of the tangential velocity of the bob and a
and b are constant coefficients. Being V = l�′ and Tv = l Fv, the viscous
damping torque can be expressed as

Tv = a l3
(
�′)2

sgn�′ + b l2�′. (3)

The sign function sgn �′ is needed since both linear and quadratic
damping must oppose motion.

The dry friction torque TC is estimated according to elementary
laws of friction, as proportional to the applied force [13,17,19,20].
Hence

TC = � rbFNsgn�
′, FN = |ml

(
�′)2 + mg cos �|, (4)

where � is the Coulomb friction coefficient, rb is the bearing bore
radius and FN is the radial dynamic load on the bearings due to the
pendulum motion. Since FN is also the axial load of the pendulum
rod, it is calculated by elementary mechanics considerations [21].
Dry friction also opposes motion, thus the sign function sgn�′ is also
present.

Fig. 1. Schematic pendulum-shaker system, with reciprocating parametric excita-
tion.

Now, introducing Eqs. (2)–(4) into Eq. (1), the non-dimensional
equation of motion of the system can be expressed as

�̈ + ˛ �̇2sgn�̇ + ˇ �̇ + M|�̇2 + cos �|sgn�̇+

+
(
R cos ω t + �3R

�3

�3
1

+ �R
�2

�1
+ 1

)
sin � = 0,

(5)

where the following definitions have been made

ω0 =
√
g

l
, t = ω0�, ω = ˝

ω0
, R = rω2

l

˛ = a l

m
,  ̌ = b

m ω0
, M = � rb

l
,

�1 =
√

1 − �2sin2ω t, �2 = cos2ω t − sin2ω t,

�3 = cos2ω t · sin2ω t.

(6)

In Eq. (6), the superimposed dot means the derivative with respect
to dimensionless time t. The magnitudes ω, R, �,  ̌ and M are
non-dimensional parameters associated respectively to the forcing
frequency, the forcing amplitude, quadratic viscous damping, lin-
ear viscous damping and dry friction. Depending on the settings
of these five parameters along with �, and the choice of initial
conditions �0 and �̇0, several steady state solutions of Eq. (5) can
be obtained, corresponding to different responses of the physical
system [7,8]. The most common responses are the rest position,
oscillations, rotations and chaotic motion.
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