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a  b  s  t  r  a  c  t

An  interface  crack  in  a  bimaterial  piezoelectric  space  under  the  action  of antiplane  mechanical  and  in-
plane  electric  loadings  is analyzed.  One  zone  of  the  crack  faces  is  electrically  conductive  while  the  other
part  is  electrically  permeable.  All  electro-mechanical  values  are  presented  using  sectionally-analytic
vector-functions  and  a combined  Dirichlet-Riemann  boundary  value  problem  is formulated.  An  exact
analytical  solution  of this  problem  is  obtained.  Simple  analytical  expressions  for the  shear  stress,  electric
field  and  also  for  mechanical  displacement  jump  of the crack  faces  are  derived.  These  values  are  also  pre-
sented graphically  along  the  corresponding  parts  of  the material  interface.  Singular  points  of  the  shear
stress,  electric  field  and  electric  displacement  jump  are  found.  Their  intensity  factors  are  determined  as
well. Intensity  factors  variations  with  respect  to  the  external  electric  field  and  different  ratios  between
the  electrically  conductive  and  electrically  permeable  crack  face  zones  are  also  demonstrated.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Piezoelectric materials are often used as functional parts of
different engineering systems including sensors, transducers and
actuators. However, existing micro-defects and particularly inter-
face cracks can strongly reduce their strength. For this reason,
interface cracks in piezoelectric materials have been actively stud-
ied in the last several decades. Such practically important cases as
the in-plane mechanical and electrical loadings and the antiplane
mechanical and in-plane electric loadings attracted a considerable
attention in scientific literature.

Antiplane problems for electrically permeable and imperme-
able cracks situated at the interface between piezoelectric layers or
between a piezoelectric layer and an elastic layer were considered
e.g. in the works by Narita and Shindo [20], Soh et al. [24], Kwon
and Lee [10], Li and Tang [12,13], Wang and Sun [26], Feng et al.
[5]. Three collinear interface cracks between dissimilar transversely
isotropic piezoelectric materials subjected to antiplane mechanical
and in-plane electric loadings were analyzed by Choi and Shin [2]
and Choi and Chung [3]. The problem of three-layer piezoelectric
and elastic strips cracked at the interface was analyzed by Narita
and Shindo [19], Kwon and Lee [11]. A moving antiplane crack
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between two dissimilar piezoelectric solids with account of the
Maxwell stress was  analyzed by Wang [29].

Moving and circular motionless conductive interface cracks
under out-of-plane mechanical loading and in-plane electric load-
ing were studied in papers by Wang et al. [27], and Wang and
Zhong [28] and the oscillating singularity at the crack tips was
derived. A conductive crack in magnetoelectro-elastic half-space
under antiplane mechanical and in-plane electric and magnetic
impacts was  considered by Rogowski [22]. A more detailed review
of antiplane crack problem investigation in piezoelectric bimateri-
als was  presented in the review paper by Govorukha et al. [6].

A crack may  arise due to a soft multilayered electrode exfolia-
tion. If an electrode situated at the material interface is completely
exfoliated along its whole length, then the formed crack can be
considered as a conductive crack. A conductive interface crack for
a plane case was  considered by Beom and Atluri [1], Loboda et al.
[15], Ma  et al. [16] for open and contact crack models. Plane fracture
problems for interface cracks in piezoelectric and magnetoelectro-
elastic bimaterials were considered by Sheveleva et al. [23] and
Zhao et al. [31], respectively.

In many cases, the finite length multilayer electrode can com-
pletely exfoliate along its whole length together with some part
of the material interface, forming a partially electroded (conduc-
tive) interface crack. This important problem, to the best of our
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knowledge, has not yet been studied. It constitutes the subject of
this study.

2. Basic equations for a piezoelectric bimaterial under
antiplane mechanical and in-plane electric loadings

For a piezoelectric material, the following coupled electrome-
chanical equations hold (see e.g. Parton and Kudryavtsev [21])

�ij = cijksεks − esijEs, Di = eiksεks + ˛isEs, (1)

where �ij , εij are the components of stress and strain tensors; Di, Ei
are the components of the electric induction and the electric field,
cijks, esij are elastic and piezoelectric constants and �is are dielectric
constants.

The equilibrium equations in the absence of body forces and free
charges are:

�ij,j = 0, Di,j = 0 (2)

The expressions for the deformation and the electric field have
the form:

εij = 1
2

(
ui,j + uj,i

)
, Ei = −ϕ,i

where ui are the components of the displacement vector and ϕ is
the electric potential.

Assume that the material is transversely isotropic with the pol-
ing direction parallel to the x3-axis. Then for a case of antiplane
mechanical and in-plane electric loadings one has

u1 = u2 = 0, u3 = u3 (x1, x2) ,  � = � (x1, x2) .

and the constitutive relations (1) take the form:{
�3i

Di

}
= R

{
∂u3/∂xi

∂ϕ/∂xi

}
, (3)

where i = 1, 2, R =
[
c44 e15
e15 −˛11

]
and c44 = c3232, e15 = e131.

Introducing further the vectors

u = [u3, ϕ]T and t = [�32, D2]T ,

the relation (3) for i = 2 can be written in the form

t = R
∂u
∂x2

. (4)

Taking into account that the functions u3 and ϕ are harmonic,
similarly to Suo et al. [25], Zhang and Wang [30], the following
presentation for the vector-function u is valid

u = 2ReФ(z) = Ф(z) + Ф̄(z̄), (5)

where � (z) = [�1 (z) , �2 (z)]T is an arbitrary analytic vector-
function of the complex variable z = x1 + ix2.Combining (4) and (5)
leads to

t = QФ′(z) + Q̄Ф̄
′
(z̄), (6)

where Q = iR.
Let us introduce the following vector-functions

v′ =
[
u′

3, D2
]T
, P = [�32, −E1]T .

Taking into account that u′ = Ф′(z) + Ф̄
′
(z̄) and using the pre-

sentation (6), these vector-functions can be written in the form

v′ = AФ′(z) + ĀФ̄
′
(z̄), (7)

P = BФ′(z) + B̄Ф̄
′
(z̄), (8)

Fig. 1. Interface crack with an electrically conductive (c, a) and an electrically per-
meable (a,  b) zones, l = b − c, � = (b − a)/l.

where the matrixes A and B have the following form

A =
[

1 0

Q21 Q22

]
, B =

[
Q11 Q22

0 1

]
.

Assume further that the plane (x1, x2) consists of two half-planes
x2 > 0 and x2 < 0 having different electromechanical properties.
Then using the Eqs. (7) and (8) for each semi-infinite plane and
performing analytic continuation procedure, similar to the paper
by Suo et al. [25], one gets

〈v′(x1)〉 = W+(x1) − W−(x1) (9)

P(1)(x1, 0) = SW+(x1) − S̄W−(x1), (10)

where

〈v′(x1)〉 = v′(1) (x1 + i0) − v′(2) (x1 − i0) (11)

S = [A(1)(B(1))
−1 − Ā(2)(B̄(2))

−1
]
−1
, (12)

A(m) and B(m) are the matrices A and B for upper (m = 1) and
lower (m = 2) regions, respectively; 〈·〉 means the jump of the
function in brackets through the interface. It’s worth noting that
representations (9) and (10) ensure that equality P(1) = P(2) holds
true along the whole axis x1.

For the considered class of piezoelectric materials, we obtain the
matrix S, which has the following structure

S =
[
is11 s12

s21 is22

]
, (13)

where all skl (k, l = 1, 2) are real.

3. Formulation of the problem

Consider a soft double-layered electrode situated at the interval
c ≤ x1 ≤ a of the interface x2 = 0 between two  semi-infinite spaces
x2 > 0 and x2 < 0. Assume that both the electrode itself and the part
a < x1 < b of the interface without electrode are exfoliated. This sit-
uation results in an interface crack (c, b), which faces are partially
covered with electrodes (Fig. 1). The crack is electrically conductive
at c ≤ x1 ≤ a and it is electrically permeable at a < x1 < b because the
absence of the normal crack opening.

An antiplane mechanical and in-plane electric loading is applied

at infinity and expressed by the vector P∞ =
[
�∞

23, E∞
1

]T
. This
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