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a  b  s  t  r  a  c  t

This paper  is concerned  with  the  linear  theory  of  piezoelectricity  for  Cosserat  continua.  The  defor-
mation  of  homogeneous  and  isotropic  chiral  materials  is investigated.  First,  a  counterpart  of  the
Boussinesq–Somigliana–Galerkin  solution  in the  classical  elastostatics  is presented.  Then,  the  funda-
mental  solutions  in  the  stationary  theory  are  established.  In contrast  with  the  case  of achiral  solids,  in
the  theory  of  isotropic  chiral  materials  the  displacement  and  microrotation  fields  are  coupled  with  the
electric  field.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In recent years the behaviour of chiral materials has been the object of intensive research. Chirality can be observed to some carbon
nanotubes, bones, honeycomb structures, as well as composites with inclusions. The deformation of chiral elastic materials cannot be
described within classical elasticity [1]. The Cosserat theory of elasticity is adequate to describe the deformation of chiral elastic solids (see,
e.g., [1–7] and references therein). The Cosserat theory studies continua with oriented particles which have the six degree of freedom of a
rigid body [8,9]. This paper is concerned with the theory of chiral piezoelectric solids. The work is motivated by the interest in the study
of piezoelectric effect in bones [10,11], carbon nanotubes [12,13], auxetic materials [7] and solids with microstructure (see, e.g., [6,14–16]
and references therein). The theory of anisotropic Cosserat elastic bodies subjected to electromagnetic fields was established by Eringen
[8,10]. The field equations are obtained for centrosymmetric solids. The theory of isotropic chiral solids has been presented by Lakes [14].
In this paper we consider the theory of piezoelectricity for homogeneous and isotropic chiral Cosserat continua. In Section 2 we  present the
basic equations. Section 3 presents a counterpart of the Boussinesq–Somigliana–Galerkin solution in the classical elastostatics. In Section
4 we use the representation of solution given in the preceding section to establish the fundamental solutions of the field equations in
the stationary theory. The coupling between mechanical and electromagnetic fields is investigated. Section 5 contains representations of
Somigliana type for displacements, microrotations and electrostatic potential.

2. Basic equations

We  consider a body that in undeformed state t0 occupies the region B of Euclidean three-dimensional space and is bounded by the
piecewise smooth surface ∂B. The deformation of the body is referred to a fixed system of rectangular cartesian axes Oxk (k = 1, 2, 3). We
denote by n the outward unit normal of ∂B. We  shall employ the usual summation and differentiation conventions.

Throughout this paper we consider the linear theory of homogeneous and isotropic chiral Cosserat piezoelectric solids. Let u be the
displacement vector field on B. We  denote by ϕ the microrotation vector field. The strain measures are given by (see Eringen [8])

eij = uj,i + εjikϕk, �ij = ϕj,i. (1)

where εijk is the alternating symbol. Let tij be the stress tensor and let mij be the couple stress tensor. The equations of equilibrium can be
expressed as

tji,j + fi = 0, mji,j + εijktjk + gi = 0, (2)
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where f is the body force and g is the body couple. The equations of the electric fields are given by

Dj,j = q, Ek = − ,k, (3)

where Dj is the dielectric displacement, q is the volume charge density, Ej is the electric field vector, and   is the electrostatic potential.
The constitutive equations for homogeneous and isotropic chiral Cosserat continua can be presented in the form [1,8,16]

tij = �errıij + (� + �)eij + �eji + C1�ssıij + C2�ji + C3�ij + �1εijkEk,

mij = ˛�ssıij + ˇ�ji + ��ij + C1errıij + C2eji + C3eij + �2εijkEk,

Dk = −�1εijkeij − �2εijk�ij + 	Ek,

(4)

where ıij is the Kronecker delta, and �, �, �, ˛, ˇ, � , C1, C2, C3, �1, �2 and 	 are constitutive constants. In the case of an achiral material
the coefficients C1, C2, C3 and �1 are equal to zero. The components of surface traction, the components of the surface moment, and the
normal component of the electrical displacement at a regular point of ∂B are given by ti = tjinj, mi = mjinj, 
 = Dknk, respectively. The material
stability requires that the strain energy be nonnegative. Thus, the constitutive coefficients must satisfy some restrictions. We  note that
[8,9]

� + 2� + � > 0, 2� + � > 0, � > 0, � > 0,

� +  ̌ > 0, � −  ̌ > 0,

(� + 2� + �)(  ̨ +  ̌ + �) − (C1 + C2 + C3)2 > 0,

	 > 0, �(� + �) − C2
3 > 0.

(5)

3. A solution of the field equations

In this section we establish a counterpart of the Boussinesq–Somigliana–Galerkin solution of the classical elastostatics. It follows from
(1)–(4) that the field equations can be expressed in terms of the functions ui, ϕi and  . Thus, in the case of the stationary theory we  obtain
the following system of equations

(� + �)�u + (� + �) grad div u + � curl ϕ + C3�ϕ  + (C1 + C2) grad div ϕ = −f ,

C3�u  + (C1 + C2) grad div u + (�� − 2�)ϕ + (  ̨ + ˇ) grad div ϕ + � curl u + 2(C3 − C2) curl ϕ − 2�1 grad   = −g,
	�  − 2�1 div ϕ = −q,

(6)

where � is the Laplacian. We note that the displacement and microrotation fields produce an electric field and, conversely, the electric
field affects the displacement and microrotation vectors. For achiral materials (�1 = 0) there is no coupling. Let us denote

a1 = (� + 2� + �)−1, a2 = (C1 + C2 + C3)−1,

d = (  ̨ +  ̌ + �)(� + 2� + �) − (C1 + C2 + C3)2,

b1 = (C1 + C2 + C3)d−1, b2 = b1a
−1
2 ,

b3 = �1b2, d1 = (� + �)� − C2
3 ,

� = [2�(� + 2� + �)d−1]
1/2
,

 = [�2 + 4�1b3	−1]
1/2
,

� = [�(2� + �)d−1
1 ]

1/2
,

p = 2[(C3 − C2)(� + �) − �C3].

(7)

In view of (5) we find that d > 0, d1 > 0, a1 > 0, a2 > 0, � > 0,  > 0 and � > 0. We introduce the operators

� = (� + �)(�� − 2�) − C2
3�,

A  = � + �2 = d1(� − �2),

�1 = (� + 2� + �)� − (� + �)A,
�2 = (C1 + C2 + C3)� − (C3A  + p�),

�3 = (  ̨ + ˇ)�� − �2(�� − 2�) − 2(C3 − C2)(p + 2�C3)�,

S = (�� − 2�)A  + 2(C3 − C2)p�,

(8)
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