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a  b  s  t  r  a  c  t

In this  paper,  an  investigation  is  made  on  the problem  of  critical  strain  of  hyperelastic  materials.  A new
kinematic  frame,  which  takes  into  account  the characteristics  of the material,  is  firstly  proposed  to con-
sider a hyperelastic  rectangular  layer  under  compression.  The  simplified  model  equations  are  derived
with  the  aid  of  virtual  principal  and  asymptotic  expansion  method.  Through  linear  bifurcation  analysis,
the  critical  strain  is  determined,  which  is  in  good  agreement  with  existing  results.  Comparisons  between
the  classical  Eular  Beam  theory,  first-order  shear  deformation  theory  and  the  present  frame  are  also  made,
and  it shows  that the  present  frame  can  provide  much  better  results  than  the  other  two  frames.  Moreover,
under  the  same  framework,  several  other typical  compressible  hyperelastic  materials  are  examined.  One
interesting  finding  is  that  their critical  strain  share  the  same  leading  order  term  which  is independent  of
the  form  of  strain  energy  functions.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Critical strain of nonlinear elastic materials induced by uniaxial
compressions is a classical topic in nonlinear elasticity. In general,
the critical strain can be determined by linear bifurcation analysis.
In the early days, there were many efforts which devoted to lin-
ear bifurcation analysis of either linear or nonlinear bars, rods and
beams, such as [1–5]. These works provided nice results for the crit-
ical bifurcation loads and eigenfunctions. Particularly, there were
some works which deal with nonlinear materials during the past
several years. Merodio and his collaborators studied the bifurca-
tion of the cylinder under different boundary conditions in recent
years. In [6], Rodrígue and Merodio investigated the bifurcation of
arterial walls of patients with Marfan’s syndrome by modeling the
arterial as a circular cylinder with finite wall thickness. The effects
of the wall thickness have been studied. Under combined axial load-
ing and internal pressure condition, the same authors [7] studied
the bifurcation of a membrane cylinder for three different modes.
In [8], Rodrígue and Merodio analyzed the buckling and postbuck-
ling of residually-stressed elastic body by finite element method.
The bifurcation points and postcritical behavior are obtained. In [9],
within a two-dimensional context, Roxburgh and Ogden obtained
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the critical stress of a two-dimensional layer by linear bifurcation
analysis. In [10], the authors applied couple series and asymptotic
expansions method to study the bifurcation and post-bifurcation
solutions of a nonlinear hyperelastic layer, both critical strain and
the post-bifurcation analytical solutions are obtained. In [11], the
authors considered the post-bifurcation solutions of a hyperelastic
rectangular block under compression/tension in a plane-strain set-
ting, and they obtained the leading order term of the critical strain
and the post-bifurcation solutions for small aspect ratio. Though
there are numerous contributions to the critical strain of separate
hyperelastic materials, we  find that there are few results for the
comparisons among critical strain of different materials.

As a starting point to determine the critical strain, one usually
makes some assumptions on the form of the displacement field. For
linear elastic material, there are two classical displacement field
assumptions: Euler and Timoshenko beam theory. In [12,13], by
taking into account the effect of the shear stress, Waas applied the
first order asymptotic expansions to approximate the displacement
of the beam. More higher-order shear beam models can be found in
[14]. However, the aforementioned theories and models may not
work for hyperelastic materials, as one can check it from [10,11].
This might be due to the order of accuracy or the absence of mate-
rial parameters in the displacement assumptions. To this end, in this
paper we  present a new kinematic frame for hyperelastic materi-
als. Based on the first-order shear deformation theory (FSDT), we
develop a New FSDT(NFSDT) to describe the displacement field. The
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Fig. 1. The geometry of layer.

NFSDT is based on a more rigorous kinematics of displacements,
and takes into account the shear stress effect and characteristics of
the material. It differs from other FSDTs and existing higher order
theories in the inclusion of the effect of characteristics of hyperelas-
tic materials. Moreover, as one will see from our latter derivations,
it turns out that the NFSDT can provide a unified and more simpler
frame for the calculations of critical strain of hyperelastic materials.
For the problems considered in this paper, with NFSDTs the results
agree well with the existing results in the open literature. Thus,
with a new kinematic frame a study of critical strain of different
hyperelastic materials is carried out in this work.

The remaining part of this paper is arranged as follows. In Sec-
tion 2, we propose a new kinematic frame for two-dimensional
rectangular layer, and obtain two nonlinear coupled ordinary dif-
ferential equations as model equations with the aid of asymptotic
expansions and virtual principle. In Section 3, the critical stain is
obtained by linear bifurcation analysis. In Section 4, we  apply the
same model to determine the critical strain for several kinds of
hyperelastic beams, and find that the critical strains of the com-
pressible hyperelastic materials share the same leading order term.
Some conclusions are drawn in Section 5.

2. Model for a two-dimensional layer

In this section, we firstly present a new kinematic frame for
the two-dimensional hyperelastic layer, and then use the asymp-
totic expansions method and the variational principle to derive the
model equations for the layer.

We consider a two-dimensional compressible hyperelastic
moderately thin layer with initially unstressed state, which has a
thickness 2a, length L. (X, Y) denotes the Cartesian coordinates of
the material points in the reference configuration (see Fig. 1).

2.1. A new kinematic frame

Generally, the equilibrium field equations can be expressed in
terms of the displacement of the layer, and a lot of simplified models
are derived based on the approximations (expansions) of the dis-
placement. According to the traditional small-strain Euler–Bernoulli
Beam Theory,  the displacement of the layer can be written as{

UL(X, Y) = U(X) − YVX (X),

VL(X, Y) = V(X),
(2.1)

where UL(X, Y), VL(X, Y) are the displacements of a material point in
direction X and Y, respectively. U(X), V(X) are the displacements of
the centroidal line in direction X and Y, respectively. Hereafter, the
symbol fX represents the derivative of the function f with respect
to X. In [12,13], Waas applied the first order asymptotic expansions
to approximate the displacement of the beam as{

UL(X, Y) = U(X) − YVX (X),

VL(X, Y) = V(X) + YUX (X).
(2.2)

In [10], Dai applied the coupled series expansions to simplify the
displacement of the layer as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL(X, Y) = U(X) + YU1(X) + Y3U2(X) + · · ·
+ı(Y2U3(X) + Y4U4(X) + · · ·),
VL(X, Y) = ı(V(X) + YV1(X) + Y3V2(X) + · · ·)
+Y2V3(X) + Y4V4(X) + · · ·,

(2.3)

where the functions Ui(X), Vi(X) are unknown functions, and ı is a
parameter.

Formulae (2.1) and (2.2) are valid for linear elastic materials.
However, since these formulae neglect shear strain effects which
are very important for the post-buckling behavior, they are invalid
for nonlinear hyperelastic materials. Expansion (2.3) is valid for
hyperelastic materials and has been successfully applied to deal
with some important problems, but this formula would lead to very
long calculations.

In this paper, we only consider the case in which instability ini-
tiates when the load is in the neighborhood of the critical load.
Under this assumption, the post-bifurcation state would be close
to the pre-bifurcation uniform deformation state. In order to cap-
ture the bifurcation state of the layer, we  present a new leading
order asymptotic model to describe displacement field of the layer
in finite deformations as⎧⎨
⎩

UL(X, Y) = U(X) − YVX (X),

VL(X, Y) = V(X) − �YUX (X) + 1
2

�Y2VXX (X).
(2.4)

Here, the parameter � is the in-plane Poisson’s ratio. This new
formula is expected to provide more accurate results for the dis-
placement of the layer, since it takes into account the effect of the
material parameter � and the shear strain.

Remark. For the in-plane uniform deformation of hyperelastic
materials, (2.4) are exactly the same as{

UL(X, Y) = U(X),

VL(X, Y) = −Y�UX (X),
(2.5)

where U(X) = k X, k is a constant.
Before using formula (2.4), we need to determine the parameter

�. To this end, we first consider a two  dimensional plane under in
plane axial compression (see Fig. 1). For the pre-bifurcation state
of the plane, the deformation gradient F is given by

F =

⎛
⎝ k 0 0

0 m 0

0 0 1

⎞
⎠ , (2.6)

where k, m are the principal stretches in direction X, Y, respec-
tively. They are dependent upon the solid’s constitutive response
and determined by

∂˚

∂m
= 0, (2.7)



Download	English	Version:

https://daneshyari.com/en/article/5018690

Download	Persian	Version:

https://daneshyari.com/article/5018690

Daneshyari.com

https://daneshyari.com/en/article/5018690
https://daneshyari.com/article/5018690
https://daneshyari.com/

