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a  b  s  t  r  a  c  t

We  present  an  accurate  and  efficient  method  based  on the  Lanczos  algorithm  for  predicting  the  onset
and  mode  of  instability  in atomistic  systems.  Specifically,  we  develop  a  framework  that  is  identically
applicable  to  all flavors  of  atomistic  simulations,  including  ab-initio  calculations.  Notably,  we do  not  make
any apriori  assumptions  regarding  the  nature  of  the  instability  or  its  location.  We  verify  the accuracy  of
the proposed  approach  by studying  defect  nucleation  during  the nanoindentation  of  a triangular  lattice
and  hydrostatic  tension  test  of  an  aluminum  crystal.  We  demonstrate  that  the  computational  cost  in
practical  calculations  scales  linearly  with  system  size, and  is accompanied  by a small  prefactor.  Overall,
the  proposed  method  is  attractive  because  it enables  the stability  analysis  of  atomistic  systems  at  the
mesoscale.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The chemistry of the core, long ranged elastic fields, and dis-
crete nature of the lattice enable crystal defects to have a significant
impact on the macroscopic properties of solids [1,2]. This motivates
the accurate characterization of defects, which includes develop-
ing a fundamental understanding of the mechanisms involved in
their nucleation. Since ab-initio calculations are limited by their
large computational cost [3–8], atomistic simulations based on
empirical potentials have been the preferred choice for studying
the nucleation of defects [9–17]. However, these studies focus on
the observation rather than prediction of defect nucleation. In par-
ticular, the nature of the instabilities—characterized by a sudden
rearrangement of atoms resulting in either a structural transfor-
mation, phase transition or nucleation of a defect—which give rise
to crystal defects is relatively less well understood. Though the
present work is targeted toward the atomistic scale, defect nuclea-
tion related phenomena can also be studied at higher length scales
[18].

In view of the above discussion, there have been previous
efforts to predict the onset and mode of instability in atomistic
systems [19–22]. However, these approaches employ a complete
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eigendecomposition of the force constants matrix, i.e., Hessian
matrix. Since the computational and memory costs of such meth-
ods scale cubically and quadratically with matrix size, respectively,
the size of systems that can be studied is severely limited. To over-
come this bottleneck in the case of defect nucleation, it has been
proposed that the stability analysis be restricted to a suitably cho-
sen subset of atoms [23–25]. However, this strategy assumes the
instability mode to be localized, and requires apriori knowledge of
the center and size of the localization region to be efficient. Another
previously developed technique associates defect nucleation with
the loss of positive definiteness of the atomic scale acoustic tensor
[26–28]. This requires redefining continuum level quantities at the
atomic scale, which can be challenging [29,30]. Furthermore, the
instability mode cannot be calculated, and the analysis needs to be
performed for every atom, which can make it inefficient.

In this work, we  develop a framework based on the Lanczos
method for accurately and efficiently predicting the onset and
mode of instability in atomistic systems. Notably, the approach
scales linearly with respect to the number of atoms in terms of
computational cost as well as memory, and possesses a small pref-
actor, making it a viable choice for large systems. In addition, it
does not require any apriori knowledge of the nature or location of
the instability, making it widely applicable. We  verify the proposed
approach by studying defect nucleation during the nanoinden-
tation of a triangular lattice and hydrostatic tension test of an
aluminum crystal.
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2. Instability criterion

Consider a system of N atoms in a S ∈ {1, 2, 3} dimensional space.

Let  ̨ denote the loading parameter and r =
[

r1 r2 . . . rN

]T ∈
R

SN×1 represent the atomic configuration. On performing a sec-
ond order expansion of the system’s energy W(˛, r) about some
configuration r* (for fixed ˛), we arrive at

W(˛, r) ≈ W(˛, r∗) + f(˛, r∗)T(r − r∗) + 1
2

(r − r∗)TH(˛, r∗)(r − r∗),

(1)

where

f(˛, r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∈ R
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represents the force on the atoms and
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∈ R
SN×SN (3)

denotes the Hessian, also referred to as the force constants matrix.
We are interested in predicting the onset and mode of instabil-

ity as the loading parameter  ̨ is varied. To this end, we  now define
the instability criterion for some given ˛. Let r∗̨ represent the cor-
responding equilibrium atomic configuraton, i.e., f(˛, r∗̨ ) = 0. The
stability of the atomistic system can then be determined by the sign
of the stability parameter

�∗
˛ = min

v

‖v‖2 = 1

vTH∗
˛v, (4)

where ‖v‖ represents the l2 norm of v, and H∗
˛ = H(˛, r∗̨ ). In partic-

ular, the system is unstable if

�∗
˛ < 0, (5)

which indicates that the configuration r∗̨ does not correspond to a
minimum in the energy landscape, i.e., W(˛, r) is not convex about
r∗̨ . The nature of the mode v∗̨ —the minimizer of the variational
problem in Eq. (4)—provides information about the type of insta-
bility, and can be used to ascertain whether it corresponds to the
nucleation of a defect.

It is worth noting that in the above discussion, we do not account
for additional constraints that may  be prescribed on the system. For
example, it is common to hold the positions of some of the atoms
fixed in practical calculations. In such a situation, the components
of v corresponding to the fixed atoms need to be enforced to be
zero while solving the variational problem in Eq. (4). Equivalently,
the stability analysis can be restricted to the movable atoms by

eliminating the rows and columns of H∗
˛ that correspond to the

fixed atoms.

3. Lanczos framework for stability analysis

In order to check the stability of the system at any given loading
parameter ˛, the variational problem in Eq. (4) needs to be solved.
The corresponding Euler–Lagrange equation is

H∗
˛v = �v, (6)

where � is the Lagrange multiplier used to enforce the constraint.
It follows that the lowest eigenvalue and corresponding eigenvec-
tor of H∗

˛ coincide with the stability parameter �∗̨ and mode v∗̨ ,
respectively. Instead of solving for �∗̨ and v∗̨ alone, it is common
to eigendecompose H∗

˛ [19–22], i.e., compute all its eigenvalues
and eigenvectors. However, the computational and memory costs
of such a procedure scale as O(N3) and O(N2) with respect to
the number of atoms, respectively, which severely restricts the
size of systems that can be studied. In order to overcome this
limitation, it has been proposed that the stability analysis be
restricted to a suitably chosen subset of atoms [23–25]. However,
such techniques assume v∗̨ to be localized, and even then they
need apriori knowledge of the location and size of the localization
region to be efficient. In addition, they require the original order-
ing of the eigenvalues to remain unaffected by the localization.
Such assumptions/approximations can lead to inaccurate results,
as demonstrated by the results in Section 4.

In view of the above discussion, we  propose calculating �∗̨ and
v∗̨ using the implicitly restarted [31] version of the Lanczos method
[32] outlined in Algorithm 1. In the Lanczos method, a three term
recurrence relation is utilized to generate an orthogonal basis vk in
which H∗

˛ is a tridiagonal matrix:

Jk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

b1 a2 b2

. . .
. . .

. . .

bk−2 ak−1 bk−1

bk−1 ak

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
k×k, (7)

where ak and bk are scalars calculated during the iteration. The
eigenvalues of Jk approximate those of H∗

˛, with the algebraically
smallest and largest ones being the first to converge. Thereafter,
the transformation matrix V consisting of the Lanczos vectors vk as
columns is used to determine the eigenmode v∗̨ . In this work, rather
than explicitly form the matrix H∗

˛, we utilize the finite-difference
approximation for the product of H∗

˛ with any vector w:

H∗w ≈ f(˛, r∗̨ + εw) − f(˛, r∗̨ )
ε

, (8)

where ε is an appropriately small parameter. In doing so, each
matrix-vector product is replaced with one force evaluation, since
f(˛, r∗̨ ) is readily available. Such a strategy is attractive because of
the substantial reduction in the computational cost and memory
storage requirements, particularly when the interactions are rela-
tively long-ranged. In addition, since the second order derivatives
of the energies are not required, the exact same implementation
can be interfaced with any flavor of atomistic simulation, including
those where the second derivatives are hard/expensive to evaluate,
e.g. electronic structure calculations.
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