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a  b  s  t  r  a  c  t

This  research  involves  the  multiscale  characterization  of strain-hardening  cementitious  composites
under  tensile  loading.  The  sensitivity  of  cracking  behavior  to  fiber dispersion  is studied  using  a spe-
cial  form  of lattice  model,  in  which  each  fiber  is explicitly  represented.  It  is  shown  that  the  nonlocal
modeling  of  fiber bridging  forces  is  essential  for obtaining  realistic  patterns  of crack  development  and
strain-hardening  behavior.  Crack count  and  crack  size  are  simulated  for progressively  larger  levels  of
tensile  strain.  The  influence  of  fiber  dispersion  is  clearly  evident:  regions  with  significantly  fewer  fibers
act  as  defects,  reducing  strength  and  strain  capacity  of  the  material.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Short dispersed fibers are commonly added to concrete mate-
rials to prevent or reduce crack openings. With appropriate
constituents and design, such materials strain-harden and exhibit
numerous fine cracks, rather than few large ones [1]. These strain-
hardening cementitious composites (SHCC) are being developed for
many applications, including those that require high toughness or
long-term durability. It is understood that crack openings depend
on local variations in the fiber content: regions with fewer fibers
act as defects within the material and promote larger crack open-
ings [2]. There are various ways to improve composite performance
through functional grading of the fiber contents [3]. Multi-scale
approaches [4–6] are particularly attractive, as they complement
knowledge gained through physical experimentation and elucidate
material structure–property relationships. However, approaches
that quantitatively relate fiber dispersion and other aspects of
material design to cracking behavior are few. To contribute to this
need, the authors have developed multiscale models of SHCC, in
which individual fibers are explicitly represented within a lattice
description of the cement-based matrix [7,8]. The models utilize
the micromechanical formulation of Naaman and Namur [9], which
connects properties defined local to the fiber–matrix interface and
the processes of fiber debonding and pullout after cracking (Fig. 1a,
b). The lattice representation of the matrix phase, which is based on
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the rigid-body-spring concept [10], provides an effective means for
upscaling local behavior of the fibers to the composite level (Fig. 1c).

This paper presents new developments in the micromechanical
modeling of individual fibers, and their cumulative effects, within
fiber reinforced cement composites. To address the limitations of
lumped-force (LF) approaches to fiber bridging, we  have devel-
oped models in which the bridging forces are distributed along the
embedded lengths of the fibers [8,11]. Herein, the distributed-force
(DF) approach is extended to accommodate nonlinear slip along
the matrix–fiber interface during the process of debonding. The
consequences of using a DF approach are demonstrated in terms of
crack openings, crack spacings, and load–displacement behavior. As
expected, both cracking behavior and load–displacement response
are correlated to the dispersion of fibers within the material. Com-
parisons with physical test results demonstrate key capabilities of
models based on the DF approach.

2. Lattice model of cement-based matrix

The matrix phase of the tensile specimen considered here is
discretized as a series of rigid-body-spring elements, which is a
special form of lattice model (Fig. 2). The block-like discretization:
(1) facilitates comparisons with theories based on section analysis;
(2) enables fine discretization of the longitudinal dimension of the
tensile test specimens; and (3) reduces computational effort.

Each lattice element is composed of a zero-size spring set
(located at area centroid C of the section common to nodes i and
j) and rigid-arm constraints that link the spring set displacements
with the nodal degrees of freedom [7,10]. The spring set includes
three axial springs (oriented normal and tangential to the section)

http://dx.doi.org/10.1016/j.mechrescom.2015.08.004
0093-6413/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.mechrescom.2015.08.004
dx.doi.org/10.1016/j.mechrescom.2015.08.004
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:jebolander@ucdavis.edu
dx.doi.org/10.1016/j.mechrescom.2015.08.004


Please cite this article in press as: J. Kang, J.E. Bolander, Multiscale modeling of strain-hardening cementitious composites, Mech. Re.
Commun. (2015), http://dx.doi.org/10.1016/j.mechrescom.2015.08.004

ARTICLE IN PRESSG Model
MRC-2991; No. of Pages 8

2 J. Kang, J.E. Bolander / Mechanics Research Communications xxx (2015) xxx–xxx

Fig. 1. Multiscale modeling of SHCC in tension: (a) matrix–fiber interface; (b) fiber
bridging a crack; and (c) composite behavior.

Fig. 2. Lattice discretization of fiber reinforced concrete.

each with stiffness k = EmAij/hij, where Aij is the section area, hij is the
element length, and Em is the matrix elastic modulus. Components
of the displacement jump across the zero-size spring set are

ıx = uj − ui + Rzj�yj − Ryj�zj − Rzi�yi + Ryi�zi

ıy = vj − vi − Rzj�xj + Rxj�zj + Rzi�xi − Rxi�zi

ız = wj − wi + Ryj�xj − Rxj�yj − Ryi�xi + Rxi�yi

(1)

where uj, vj , and zj are the x-, y-, and z-displacements of node j,
respectively; Rxj, Ryj, and Rzj are the length components of the rigid-
arm connecting nodal point j and the spring set location C. Each
spring set also includes three rotational springs that are activated
by rotations

�x = �xj − �xi

�y = �yj − �yi

�z = �zj − �zi

(2)

where �xj, �yj, and �zj are the x-, y-, and z-axis rotations of node
j, respectively. Stretching of the axial springs according to Eq. (1)
produces corresponding spring forces with magnitudes Fx, Fy, and
Fz. A measure of matrix stress is calculated by

�R = FR
AP
ij

(3)

where FR = (Fx2 + Fy
2 + Fz

2)
1/2

is the magnitude of the resultant of
the spring forces, and AP

ij
is the projection of Aij on a plane perpen-

dicular to FR [12]. For each iteration of the solution process, the
ratio � = �R/ft is calculated for each lattice element, where ft is ten-
sile strength of the matrix. As is customary for lattice models, only
the element with maximum � ≥ 1 experiences fracture within the
iteration cycle. The matrix is assumed to be homogenous; material
disorder is solely due to the presence of fibers.

3. Fiber inclusions within the lattice model

Fiber placement within the material domain is quasi-random,
according to prescribed density functions, as described later in this
paper. Alternatively, fiber positions could be found experimentally
(e.g., using computed tomography) or from simulations of the cast-
ing process, in which the transport of fibers to their final resting
positions is modeled [13].

3.1. Pre-cracking representation of fibers

A fiber lattice element is constructed wherever a fiber intersects
a matrix element cross-section, as shown in Fig. 2. In a manner
comparable to that of the matrix discretization, nodes i and j are
linked with rigid-arm constraints to a zero-length spring aligned
with the fiber and located at the intersection point P. This spring
represents the fiber axial stiffness prior to matrix cracking [7],

kf = Af �f (�P)
(hv/ cos �)�m

(4)

where Af is fiber cross-sectional area; � is the angle between fiber
and loading direction; �m is the matrix strain in the direction of the
fiber; �P is distance from fiber end to point P; and hv is the distance
between nodes i and j in the direction of loading. Elastic shear lag
theory [14] is used to determine fiber axial stress at the point of
intersection:

�f (�P) = Ef �m

[
1 − cosh(ˇ((lf /2) − �P))

cosh(ˇlf /2)

]
(5)

in which Ef represents fiber elastic modulus; lf is the fiber length;
and  ̌ is a function of several factors, including fiber modulus,
radius, arrangement, volume fraction, and the matrix shear mod-
ulus at the fiber interface. With kf thus calculated by Eq. (4),
formulation of the element stiffness matrix is analogous to that
of the matrix phase.

If N fibers intersect the matrix element cross-section, there will
be N fiber element contributions to the stiffness coefficients associ-
ated with nodes i and j. Fiber additions do not increase the number
of computational degrees of freedom of the model, since fiber
elements and matrix elements connect to the same pairs of lat-
tice nodes. This enables computations involving large numbers of
fibers. We  describe this fiber model as being semi-discrete, because
fiber loading is constrained to the rigid-body kinematics of the
associated matrix elements. Alternatively, fibers can possess their
own  degrees of freedom [8], but that capability is computationally
expensive even when modest numbers of fibers are considered.

3.2. Post-cracking representation of fibers

3.2.1. Lumped-force (LF) approach
After cracking, properties of the spring component traversing

the crack are governed by debonding and frictional pullout of the
fiber, according to the micromechanical model of Naaman and
Namur [9]. Relevant properties of the fiber–matrix interface include
the adhesional and frictional bond strengths, which are represented
by �a and �f, respectively (Fig. 3a). The fiber bridging force is applied
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