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a b s t r a c t

The kinetic Monte Carlo (kMC) method is used in many scientific fields in applications involving rare-
event transitions. Due to its discrete stochastic nature, efforts to parallelize kMC approaches often
produce unbalanced time evolutions requiring complex implementations to ensure correct statistics. In
the context of parallel kMC, the sequential update technique has shown promise by generating high
quality distributions with high relative efficiencies for short-range systems. In this work, we provide an
extension of the sequential update method in a parallel context that rigorously obeys detailed balance,
which guarantees exact equilibrium statistics for all parallelization settings. Our approach also preserves
nonequilibriumdynamicswithminimal error formany parallelization settings, and can be used to achieve
highly precise sampling.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since its development in the 1970s, the kinetic Monte Carlo
(kMC) method [1–3] has enjoyed wide popularity, and has been
applied to problems far beyond what it was initially designed to
model. The kMC approach belongs to a general class of methods
known as stochastic discrete event simulators [4], which have
also attracted much attention and have been used in numerous
applications. These simulation techniques aremesoscale by design,
as the inputs are often propensities – or probabilities per unit time –
that are extracted from either simulations, measurements, or both,
at microscopic scales. Due to the fact that it is an event driven
algorithm, kMC has the potential of vastly extending the accessible
timescales of its continuous-time counterparts.

As the demand for simulations of larger system sizes increases,
many questions about how best to parallelize these methods re-
main. Themain difficulty arises from the fact that standard discrete
time step approaches to the parallelization of deterministic differ-
ential equations [5] andmolecular dynamics integrators [6] are not
directly applicable due to the discrete and stochastic nature of time
evolution. Significant progress towards the formulation of a Trot-
ter decomposition has been achieved, however [7], and the subject
remains an active area of research.
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By far, the dominant paradigm in parallel kMC is the asyn-
chronous approach, working from the idea that parallel processes
are run simultaneously, with intermittent bookkeeping to recover
either exact or nearly exact statistics. The classic set of rigorous
and semi-rigorous approaches proposed by Amar and Shim [8,9],
and other derivative algorithms [10], remain as the reference for
parallel kMC simulators. These designs can be highly efficient, but
the asynchronous strategy gives rise to rough virtual time hori-
zons, since each process advances by an independent, stochasti-
cally varying time clock. This effect was first noted and addressed
by Korniss et al. [11–13]. Martinez et al. [14,15] proposed an el-
egant solution to the time horizon problem, resulting in a syn-
chronous approach. They build on a null event formulation found
in the discrete event community, while also developing a con-
trolled approximation to the master equation for the parallelized
process.

In recent years, a number of researchers have developed the
notion of sequential updates in the context of single process sim-
ulations [16–19]. This formulation has been rigorously shown to
produce equilibrium distributions by obeying a balance condition,
but has not been applied to parallelization contexts. One advantage
to the sequential approach in a parallel simulation is that the time
steps advance sequentially with each process, and there is no need
toworry about time synchronicity across all the processes. A recent
sequential approach for parallel simulations has been proposed by
Arampatzis, et al. [7]. Since the sequential method can limit paral-
lel efficiency, considerable care is given as to how to treat nonin-
teracting processes simultaneously, making a convincing case that
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this approach can also be efficient. In the SPPARKS simulation suite
of Plimpton et al. [20], an efficient implementation that simultane-
ously updates noninteracting processes is also used.

In this work, we propose to further develop the sequential
update paradigm as a parallelization strategy. Here, however,
we propose a procedure that obeys detailed balance, and also
show that we can recover a very good approximation to the time
response, laying the foundation for more detailed treatments in
the future. The basis of our approach lies in defining a procedure
for generating sequential update schedules in such a way that
detailed balance is assured for the endpoints of the schedules. We
also discuss on how to use the statistics of the endpoints of each
process within the schedule. For the present work, we discuss only
the theoretical and algorithmic aspects of the parallel protocol,
and will cover implementation and performance related issues in
a future work.

This paper is organized as follows. We begin with a theoretical
overview of the kMC method and sequential updates. We then
formulate the sequential update strategy that preserves detailed
balance in the context of parallel simulations. We include a
discussion on collecting statistics after each parallel process has
run during a schedule sweep. The method is then tested and
applied to Ising systems of increasing complexity in Section 3. We
conclude with a brief discussion of the results obtained and the
conclusions.

2. Theory: Sequential updates with kinetic Monte Carlo

2.1. The master equation and kinetic Monte Carlo

To begin the discussion, we express our propagation strategy
as a master equation. For kinetic Monte Carlo, it is sometimes
more convenient to work with the Chapman–Kolmogorov form,
as it contains the transition kernel explicitly in the expression.
The Chapman–Kolmogorov form [21] of the master equation for
a Markov system is

TNp(σ ; s) = p(σ ; s + N), (1)

where the transition kernel T is expressed in left stochastic
form [21], and p(σ ; s) is the time dependent probability vector for
the configuration vector σ at integer time state s. The system is a
Markov process, and we advance the system by N steps by apply-
ing the T matrix to p an integer number N times. For the present
work, the vector of configurations σ is the vector of all 2NS possi-
ble spin states where NS is the number of spins in a model Ising
system, as described in Appendix A. The standard detailed balance
for a single step can be expressed as πiTji = πjTij, where πi is the
equilibrium probability of occupying the ith configuration (spin)
state, such that p(σi; s = ∞) = πi. For the cases presented in this
work, each time step follows Glauber dynamics [22], as defined in
Eq. (A.3).

The time step in Eq. (1) can be advanced by using a Poisson
variate for a procedure consisting of N steps, or

pp(∆t(N)) =
1
τS

∆tN−1

(N − 1)!
e−∆t/τS . (2)

The expectation value of a variate drawn from the distribution in
Eq. (2) is ⟨∆t(N)⟩ = NτS , where τS is the time scale of the system.
For purposes of this work, the time step is advanced only by the av-
erage value in order to simplify the analysis. Both approaches give
equivalent statistics, however. For n-foldway simulations [1,2], the
timescale is computed as the residence time, or the inverse total
frequency τS = 1/R, where R is the sum of all possible transition
rates. For the present work, we regard τS as the intrinsic timescale

Fig. 1. Example 2D configuration partitioned into ND = 9 domains with a
’checkerboard’ pattern and schedule Λ = {A, B,D, C, F , I,H,G, E}. Each domain
runs for a fixed number of NI independent steps with neighboring (or interacting)
domain processes held fixed. At the end of each sweep, a new schedule is generated
randomly. A vertically striped partitioning would treat the combined domains
(A, B, C), (B, E,H), and (C, F , I) each as a single process, resulting in ND = 3.

of the simulation. The Poisson variate for anN step process is read-
ily obtained by computing the negative logarithm of N uniform
variates and summing them. Using either the Poisson variate or the
expectation value, we can advance the time clock as

TNp(σ ; t) = p(σ ; t + ∆t(N)), (3)

to generate the time dependent solution to the master equation.
For all the cases in this work, the time step is advanced by the ex-
pectation value.

2.2. Construction of sequential strategy that obeys detailed balance

Here we develop a procedure based on the work of Deem
et al. [23], and also Orkoulas et al. [17,19,18], who developed a
theory for sequential updates and showed that exact equilibrium
distributions can be obtained. The primarymotivation for using se-
quential updates in these works was to accelerate convergence of
equilibrium simulations. For the present work, we wish to develop
the sequential update procedure as a parallelization strategy, fol-
lowing the ideas introduced by Shim and Amar [8] and Arampatzis
et al. [7]. Since we wish to have a parallelization strategy suitable
for studying nonequilibrium and dynamical properties, the goal
here is to develop a procedure that preserves the dynamic charac-
ter of native, unparallelized simulations, rather than to have rapid
convergence properties. Our procedure can be regarded as an ad-
vance in that it introduces a sequential update strategy obeying
detailed balance in a parallelization context.

Consider a configuration space that is partitioned into domains,
such as that shown in Fig. 1. Each domain is of equal size, and
the domain partitioning is held fixed for the duration of the
simulation. The general procedure of sequential updating requires
the simulation of a single domain process for a number NI of
independent time steps while holding the neighboring domains
at a fixed coordinate state. For each process of length NI , data is
first collected from the fixed state of the neighboring processes.
For distributed data parallelizations, this data from neighboring
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