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a b s t r a c t

Aparticle-in-cell (PIC) simulation tool, OOPD1, iswrapped in the Python programming language, enabling
automated algorithmic optimization of physical and numerical parameters. The Python-based environ-
ment exposes internal variables, enablingmodification of simulation parameters, aswell as run-time gen-
eration of new diagnostics based on calculations with internal data. For problems requiring an iterative
optimization approach, this enables a programmable interactive feedback loop style simulation model,
where the input to one simulation is a programmable function of the output of the previous one. This
approach is applied to field-emission of electrons in a diode, in order to explore space charge effects in
bipolar flow. We find an analytical solution for maximizing the space-charge limited current through a
diode with an upstream ion current, and confirm the result with simulations, demonstrating the efficacy
of the feedback scheme. We also demonstrate and analyze a modeling approach for scaling the ion mass,
which can shorten simulation time without changing the ultimate result. The methods presented can
be generalized to handle other applications where it is desirable to evolve simulation parameters based
on algorithmic results from the simulation, including models in which physical or numerical parameter
tuning is used to converge or optimize a system in one or more variables.

© 2014 Elsevier B.V. All rights reserved.

1. Background

There are many problems in particle-in-cell (PIC) simulations
where an iterative approach is taken to optimize physical parame-
ters. When the only available interface to the simulation is a high-
level graphical user interface (GUI), then a great deal of human
interaction is required in the iteration process [1]. This can be
highly inefficient when each iteration may take hours or days. Our
goal for this work is to develop a programming model where the
input and analysis of simulations happen in the same environment
(in our case, the Python programming language).

By having the input and analysis exist in the same interface, and
that interface being a fully interactive general purpose program-
ming language, we hope to greatly facilitate an automated analy-
sis and feedback-loop-style simulation pattern, where researchers
specify an initial simulation, and describe the analysis for deter-
mining when to update, change, or halt the simulation, all in the
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same place and in the same language. Python is just one example of
a robust programming language with relatively simple syntax and
high portability, which will allow deployment of multi-step algo-
rithms of virtually unlimited complexity in the optimization pro-
cess, both in terms of analysis and control. Python has been used
in other environments to this effect, with great success [2,3].

Field-emission of electrons in diodes is a matter of much in-
terest, another extension of the basic Child–Langmuir system [4].
By adding ion current emitted from the anode, it has been shown
that the field-emitted electron current can be enhanced well be-
yond that predicted by the familiar three-halves law in classical
regimes [5]. Here we will expand that earlier work to relativistic
energy regimes, and present a high-level approach for optimizing
the emitted current via a new Python interface to a low-level sim-
ulation code.

2. Model

2.1. The system—bipolar flow

The physical system which we explore is that of field-emitted
electrons in the presence of ion current in a one-dimensional diode.
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Fig. 1. The diode system. Ions are injected with fixed current, and electrons via field-emission.

A fixed current of ions, with ionization level Z = 1, is emitted
from the anode at a given current density. Electrons are emitted
by field emission, governed by the Fowler–Nordheim equation, as
expressed in Eq. (1) [6,7].
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where Es is the surface electric field, φ is the work function, and J
is our current density, and t , v, and y are parameters
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A fixed DC voltage is applied across the diode, as shown in Fig. 1.
The transmitted electron current is limited by the space charge

in the gap [8]. By adding an upstream ion current, someof the space
charge is neutralized, and the maximum transmitted current den-
sity is increased. Our goal is to determine the maximum electron
current limit for a variety of gap distances and voltages.

We can get a steady-state equation for current in the relativistic
bipolar diode, by startingwith Poisson’s equation and the relativis-
tic conservation of energy [9–11]:

∇
2Φ = −

ρ

ϵ0
(5)

eΦ = (γe − 1)mec2 + (γi − 1)mic2 (6)

whereΦ is the potential,ρ is the total charge density,me andmi are
their respective masses, e is the magnitude of the electron charge,
and γe and γi are the Lorentz factors for electrons and ions, respec-
tively. Eq. (6) balances potential energy (eΦ) with the kinetic en-
ergy contributions ((γ − 1)mc2) of both electrons and ions at each
point in the diode, where

γe =
1

1 − v2
e /c2

(7)

is a function of the velocity (ve) for each species, which is in turn a
function of position in the diode. Adding the relationship of current
to charge density,

ρ = ρe + ρi, (8)

where the current density Ji is

Ji = ρivi (9)

and the electron current density is

Je = ρeve, (10)

a solution combining these with Eq. (1) can be derived [12]:
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where Γ collects the relativistic factors

Γ =

(γi + 1)1/2(γe0 − γe)

1/2
− (γi0 + 1)1/2(γe0 − 1)1/2


, (12)

q is a factor describing the ion current relative to the electron cur-
rent

q = (Ji/Je)(mi/Zme)
1/2, (13)

and the γ0 factors correspond to electrons and ions at the full gap
potential (V )

γi0 = 1 +
ZeV
mic2

(14)

γe0 = 1 +
eV

mec2
. (15)

We can solve for a steady state of this system in a self-consistent
manner by alternating solutions of the Fowler–Nordheim equa-
tions with those of Poisson’s equation [5]. We start with an initial
guess for Je, then solve Fowler–Nordheim for Es. This Es is plugged
into Poisson’s equation to find a new value for Je. This process is re-
peated until Je converges within a chosen tolerance, such as .01%:
Jn − Jn−1

Jn
< 10−4. (16)

2.2. Saturation in various regimes

Now that we have a mechanism for getting solutions for Je in
this system, we can explore various values of q, our ion current pa-
rameter. q = 0 corresponds to no ion current at all, and increasing
qmeans increasing the ion current from the cathode.We candefine
a saturation value (qs) by setting the surface electric field to zero at
the cathode, and solving Eq. (11) for q, evaluating at the cathode
(γi = 1):

qs = (γi0 + 1)−1/2(γe0 − 1)−1/2
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. (17)

This corresponds to space-charge limited emission of ions, and
should indicate a maximum steady-state value for both Ji and Je.

By expanding Eqs. (14)–(15) into Eq. (17), we get Eq. (18), a full
expression of the saturation factor qs,
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