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a b s t r a c t 

In previous works the authors presented two load distribution models for gears. One of the 

models was based on the rigid tooth assumption and the more complex of the two took 

advantage of influence coefficients obtained from a FEM model to find the load distribu- 

tion. In this work an analytical model relying on the ISO 6336 maximum teeth stiffness 

and a parabolic single tooth stiffness per unit of single line length was developed. This 

load distribution model relies on an original description of the contact line length based 

on Heaviside functions to find the gear mesh stiffness. The proposed model is of straight 

forward implementation, very little computational cost and yields promising results. The 

concept of constant mesh stiffness gear design is also introduced. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Gears load distribution has been an object of study for many years now [1–4] . In fact in recent times this has been 

a very active topic of research. Ajmi [5] developed a model to study the quasi-static and dynamic load distribution of 

a spur gear. Gear body distortions, time dependent and position properties were considered to simultaneously solve the 

equations of motion and contact problem. Tooth shape deviations and alignment errors were also taken into account. Pedrero 

[6] introduced a model of non-uniform load distribution along the line of contact obtained using the minimum elastic 

potential energy criterion. An approximate, accurate equation for the inverse unitary potential was also suggested. Rincon 

[7] proposed a model where the deformation at each gear contact point was given by the combination of a local and global 

term. The global term was calculated using FEM simulations and the local term took advantage of the Hertzian contact 

theory. More recently Lisle [8] compared the gear root bending stress using the approaches suggested in ISO 6336:2006 

and AGMA 2101-D04 with FEM simulations and experimental measurements using strain gauges. Iglesias [9] studied the 

effect of manufacturing errors in the load sharing in a planetary transmission. Dai [10] investigated the static and dynamic 

tooth root strains in spur gear pairs using a finite element/contact mechanics approach. Sanchez–Marin [11] proposed a new 

geometric approach for the tooth contact analysis. Ye [12] proposed an efficient computerized tool for loaded tooth contact 

analysis that took into consideration the conditions of tip corner contact and shaft misalignment. 
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Table 1 

Geometrical parameters of the C40, H501 and H951 gears. 

Gear type: C40 εβ = 0 H501 εβ ≤ εα H951 εβ > εα

Driven Driving Driven Driving Driven Driving 

Number of teeth ( z i ), [-] 16 24 20 30 38 57 

Module ( m ), [mm] 4.5 3.5 1.75 

Centre distance ( a ), [mm] 91.5 91.5 

Pressure angle ( α), [ °] 20 20 

Helix angle ( β), [ °] – 15 

Face width ( b ), [mm] 40 23 23 

Profile shift ( x z ), [/] + 0.1817 + 0.1715 + 0.1809 + 0.0891 + 1.6915 + 2.0 0 03 

Addendum diameter ( d ai ), [mm] 82.64 118.54 80.67 116.27 76.23 111.73 

Transverse contact ratio ( εα), [/] 1.44 1.46 0.93 

Overlap contact ratio ( εβ), [/] – 0.54 1.08 

Average roughness ( Ra ), [μm] ≈ 0.7 ≈ 0.35 ≈ 0.35 

Material 16MnCr5 16MnCr5 

Despite being an age old problem, the amount of work that has been recently done regarding gear load distribution, 

just shows how important this research topic is. An accurate load distribution profile is fundamental to properly design a 

gear, not only in terms of load capacity, but also efficiency estimation [13] . The need to develop simpler, more efficient and 

more accurate load distribution models is then evident, specially considering that the use of optimization algorithms to find 

optimal designs is becoming a trend [14–16] . Optimization algorithms can be based on iterative processes, therefore having 

a reliable and fast load distribution model for gears is advantageous if designing optimal gears is a goal. 

In a previous work [17] the authors presented two gear load distribution models: 

1. Quasi-static rigid model (analytical); 

2. Quasi-static local elastic model (numerical-analytical). 

The quasi-static rigid analytical model assumed that at a given position in the path of contact the load per unit of 

length along a line of contact over a tooth was constant. It was also assumed that the load per unit of length was the same 

between all meshing tooth pairs at a given position, therefore inversely proportional to the sum of the lengths of the lines of 

contact. This first formulation took advantage of the properties of an approximation of the Heaviside step function to obtain 

a continuous description of the load distribution based on the lengths of the lines of contact [17] . This model, namely the 

length of lines of contact model, was reintroduced in this work using an updated notation ( Section 2 ). 

The quasi-static local elastic model [17] was based on the constrained minimization of the total potential energy of 

the gear system. In this model the compliance coefficients were extracted using an open source FEM solver wrapped in a 

custom code. The load balance including frictional forces was introduced using a Lagrange multiplier [17,18] . As a result of 

the implementation of this model the load distribution along the lines of contact as well as the gear mesh stiffness are 

obtained. 

In these works [17,18] (and also for the current work) the load distribution problem was studied disregarding dynamic 

and Hertzian effects. The load dependent Hertzian non-linear effects play a more important role in the mesh stiffness than 

in the load distribution, where the non-linear effect is diminished [7] . 

In the current work a quasi-static analytic elastic model was developed and compared with results of previous models. 

The current model takes the literature definition of stiffness and from there an original approach based on Heaviside func- 

tions is combined with the single tooth pair mesh stiffness to obtain a description of the load distribution. In this model, 

the load distribution along the single line of contact was assumed constant. 

The main advantages of the model presented in Section 3 are in its straight forward formulation, simple implementation 

and accuracy of the load distribution and mesh stiffness results at an insignificant computing cost. 

The proposed load distribution model was tested with the different gear geometries presented in Table 1 . The C40 and 

H501 are “conventional” spur and helical gear geometries, while the H951 is a “low loss” gear [19] . It should be noted that 

the C40 gear is like an FZG type C gear, but with a face width of 40 mm. The planetary gear presented in Table 3 was also 

used to compare the different models. 

2. Quasi-static rigid model 

As a first approximation the load per unit of total contact line length along the path of contact was assumed constant. 

From this assumption a quasi-static rigid load distribution model was developed. 

2.1. Analytical description of the length of the lines of contact 

Let us consider a coordinate ξ that is the non-dimensional coordinate along the path of contact (distance divided by the 

transverse base pitch, p bt ), which is zero at the starting line of the meshing action ( Fig. 1 ). 
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