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a b s t r a c t 

This paper presents an efficient discretization method for the modeling and simulation of 

reeving systems using multibody dynamics. Reeving systems are assumed to include rigid 

bodies connected by a set of sheaves or reels and wire ropes. The method is based on 

line-parametrized Absolute Nodal Coordinate Formulation (ANCF) defined in the frame- 

work of an Arbitrary Lagrangian–Eulerian (ALE) description. In the ALE description the el- 

ement nodes have variable material coordinates thus allowing the element to change its 

position within the flexible body. This property is very convenient to model wire ropes 

rolled in sheaves or reels that have variable-length free spans, as usually occurs in reev- 

ing systems. Axial-torsion elastic coupling of the wire ropes is also a very important effect 

to be considered in reeving systems. A set of locally defined cross-section rotation an- 

gles is introduced to describe this effect thus abandoning the ANCF formalism. This paper 

presents different options for the wire rope modeling depending on the problem dimen- 

sion (1, 2 or 3D) and the assumed elastic force model. Depending on the application the 

method offers elements that can show axial, torsion and bending deformation energies or 

any combination of them. This paper presents a general procedure to model reeving sys- 

tems and the numerical calculation of the resulting equations of motion. Two examples 

are presented: the dynamic model of a 2:1-suspended electrically-driven elevator and a 

quasi-static model of a large crane. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Wire ropes, belts and cables are the most widely used machine elements that exhibit large deformation. The complex 

dynamic behavior of these solids and its fundamental influence in the overall behavior of the machine in which they oper- 

ate deserve a special attention in multibody machine modeling. However general purpose or theoretical works in the field 

of large-deformable multibody systems [1–4] in many cases do not focus on the particular details of the modeling of wire 

ropes, belts or cables. These details include frictional contact with sheaves, localized deformation in the contact segment, 

transverse vibration in spans and axial-torsion elastic coupling in wire ropes. Finite element models face the fundamental 

problem of the elements length requirement which is small in the segments in contact with the sheave but relatively large 

in the spans. In the Lagrangian Finite Element approach short elements are needed for the whole rope discretization since 
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any element can eventually be in contact with a sheave. Under these conditions finite element rope models become uneffi- 

cient, being unsuitable for example for real-time applications. This paper shows how the combination of the Absolute Nodal 

Coordinate Formulation and the Arbitrary Lagrangian–Eulerian method (ALE-ANCF) [5] can alleviate this problem. Although 

the presented method can also be adequate to model the rope-sheave contact, this problem is not addressed in this paper. 

Variable length wire rope was modeled using chain links modeled with lumped masses for marine applications in [6] . 

An alternative method to account for elasticity of the wire ropes considers them as linear springs with length-dependent 

stiffness and neglects inertia and weight forces [7] . This model can be sufficiently accurate in many applications. However, 

this method cannot describe lateral vibrations and it can be energetically inconsistent [8] . In order to consider the rope 

inertia and weight a lumped-parameters discretization (spring-mass model), the Raileigh–Ritz method [8] or non-linear 

finite elements can be used. The ANCF has been previously used to model cables [9–11] and belt-drive systems [12] facing 

the discretization problem explained in the previous paragraph. A recent publication by Hong and Ren [5] re-defines the 

ANCF using an Arbitrary Lagrangian–Eulerian (ALE) description. In that paper the method is applied to the modeling of 

sliding joints. This paper exploits the applicability of the ALE-ANCF method to the modeling of reeving mechanisms. 

The elastic behaviour of wire ropes is treated in refs. [13,14] . While the book by Costello [13] shows an elegant theory 

of the wire ropes behaviour, the resulting theoretical results have difficulties to agree with experimental tests especially 

with the so-called rotation resistant ropes that are widely used in reeving systems. This book explains in detail the linear 

axial-torsion coupling that occurs in wire ropes. The book by Feyrer [14] is more experimentally oriented and presents a 

more appropriate quadratic axial-torsion elastic coupling for rotation resistant ropes. In this book a description of the tests 

and testing machines required to get the constants associated with the elastic behavior of the wire ropes are described. 

The present work focuses on modeling the overall dynamic behaviour of machines with reeving systems. To this end 

wire ropes are modelled as rods. Classical rod models can be classified [15] into Cosserat, extensible Kirchhoff and inexten- 

sible Kirchhoff models, depending on whether shearing and extension, only extension or neither shearing nor extension are 

considered, respectively. These three classical rod models can describe bending and torsion of the rods. Shear deformation 

of wire ropes is very difficult to model because the cross section is actually a set of independent sections of the wires. In 

addition shear deformation of wire ropes is not important for the overall dynamics of reeving mechanisms. However tor- 

sion deformation of the wire ropes may have important influence in the dynamics and quasi-static behaviour of the reeving 

system. Due to these reasons the discretization procedure developed in this work is based on the extensible Kirchhoff rod 

model [16,17] . 

This paper presents a numerical method for the modeling and simulation of reeving systems as multibody systems. 

The model is based on the discretization of the wire ropes using an ALE mesh. Section 2 explains the suitability of the 

ALE description for the modeling of reeving systems. Section 3 presents the ALE-ANCF method that is basically the one 

introduced in [5] adding an alternative and simpler linear versions of the same element. Section 4 presents an original ALE 

element that introduces locally defined torsion angles for the description of axial-torsion elastic coupling in wire ropes. This 

new element can no longer be considered as an ANCF element. Section 5 shows the general procedure to model reeving 

systems with the elements presented in the previous sections. Section 6 provides simulation results using as examples a 

1:2-suspension elevator and a large crane. The elevator example is a simple 1-D system that shows the application of the 

method to the analysis of the longitudinal dynamics of this machine. The crane example is an industrial application with 

relatively complex geometry that shows the application of the method to study the axial-torsion elastic coupling in reeving 

systems. This last problem is solved quasi-statically. 

2. Ale approach for modeling reeving systems 

In the Lagrangian-based finite element method (FEM) nodes are attached to material while in the Eulerian-based FEM 

nodes are fixed in space. The Lagrangian approach is common in solid mechanics while the Eulerian approach is more 

common in fluid mechanics. For the modeling of problems which are somehow in between, like large deformation problems 

that take place during metal-manufacturing, the Arbitrary Lagrangian–Eulerian approach was introduced [18] . In the ALE 

approach the finite element mesh is neither fixed to the material nor fixed in space. Instead the nodes are conveniently 

located to model the problem to be solved. This idea is very convenient for the modeling of reeving systems as it will be 

shown next. 

The advantage of the ALE approach for modeling reeving systems is clearly observed in Fig. 1 . The figure shows a 1:1- 

suspension elevator, that includes the drive sheave, the cabin and the counterweight, in two different positions. The drawing 

on the left shows the regular Lagrangian FEM discretization. The finite elements have equal length which is determined by 

the length needed to adequately model the rope-sheave contact (approximately one third of the sheave diameter in the 

drawing). Finally the model has many elements whose length is probably smaller than that needed to model the rope 

spans. A small length of the elements is needed because any of them may eventually come into contact with the sheave. 

The drawing on the right shows the ALE discretization. The elements length is uneven. Short elements are used in the 

segment in contact with the sheave while long elements (single elements in the figure) are used in the spans. This type 

of discretization is possible due to the ALE description. Finally much less elements are needed to model the system when 

using the ALE approach. 

Contact modeling can also be improved with the ALE approach. In the Lagrangian mesh the elements that are coming into 

contact with the sheave have difficulties to describe the deformed shape. When contact starts the part of the element that 
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