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a b s t r a c t

The construction of optimized explicit two-step hybrid methods for solving orbital problems and oscilla-
tory second order IVPs is analyzed. Thesemethods have variable coefficients depending on the parameter
ν = ω h, where h is the integration step-size andω represents an approximation of themain frequency of
the problem. Some optimized explicit two-step hybrid schemes with orders four and six are derived and
their stability and phase properties are analyzed. The new methods have the property of being zero dis-
sipative for all the values of the parameter ω whereas their dispersion errors (phase-lag) are optimized
in terms of the relative error committed in the approximation of the main frequency of the problem.
The numerical experiments carried out with several orbital and oscillatory problems show that the new
optimized two-step schemes are more efficient than other methods recently proposed in the scientific
literature for solving this class of problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Orbital problems and oscillatory differential systems often arise in different fields of applied sciences and engineering such as celestial
mechanics, astronomy and astrophysics, quantum chemistry, electronics,molecular dynamics and so on (see [1]), and they can bemodeled
by second order initial value problems (IVPs) of the form

y′′(t) = f (t, y(t)), y(t0) = y0 ∈ Rm, y′(t0) = y′

0 ∈ Rm, (1)

where for simplicity f (t, y) is assumed to be sufficiently smooth, so that the IVP (1) has a unique solution. Since the analytical solutions
of these IVPs are usually not available, they can be solved by using general purpose numerical methods or using codes specially adapted
to the oscillatory behavior of their solutions.

In the last decades, the design and construction ofmethodswith variable coefficients for solving oscillatory IVPs (1) has been considered
by several authors (see [2–27] and references therein). The coefficients of thesemethods usually depend on the parameter ν = ω h, where
h is the integration step-size and ω represents an approximation of the main frequency of the problem. The aim of these methods is to
use the available information on the particular structure and/or the behavior of the solutions of the corresponding problems to derive
more accurate and efficient algorithms than the general purpose methods for such a type of problems. Wemention the pioneering papers
of Gautschi [2] and Bettis [3], in which exponentially fitted (EF) linear multistep methods and adapted RK algorithms, respectively, were
introduced for solving differential systems with oscillatory solutions. Themost representative examples of such algorithms are the phase-
fitted methods [7,8] and the exponentially or trigonometrically fitted methods (EF or TF methods) [9–27]. In practical applications, it has
been shown that phase-fitted methods and EF or TF methods are more accurate and efficient than non-fitted ones provided that the main
frequency of the problemor a good approximation of it is known in advance. Therefore, the problemof how to choose a good approximation
of the fitted frequency is crucial for an efficient implementation of these methods. Some procedures for the frequency determination in
EF methods have been analyzed in [14,15], but this problem is very difficult and it is still pending to be solved. Recently, Ramos and Vigo-
Aguiar [28] have shown that the fitted frequency strongly depends on several factors: the differential equation, the initial conditions and
the step-size.
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More recently, Kosti et al. [29,30] have optimized explicit Runge–Kutta–Nyström methods (RKN methods) with four stages and alge-
braic order five for solving oscillatory IVPs. When the main frequency of the problem is known exactly, these methods have the property
of being zero dispersive and zero dissipative with zero first derivative of the dissipation error or with zero first derivative of the dispersion
error. The numerical experiments given in [29,30] show that these optimized RKN methods are more accurate and efficient than their
classical counterparts and a phase-fitted RKN method [8].

The purpose of this paper is the design and construction of explicit two-step hybrid methods which are optimized for solving orbital
problems and related oscillatory IVPs. These methods are zero dispersive and zero dissipative when the main frequency of the problem
is known exactly. But when the main frequency is known with a certain approximation, the methods have the property of being zero
dissipative whereas the dispersion errors are optimized in terms of the relative error committed in this approximation. The paper is
organized as follows: Section 2 is devoted to present the basic concepts on explicit two-step hybrid methods as well as the notation to
be used in the rest of the paper. In Section 3 we present the optimization process which is based on the expansion of the dispersion and
dissipation errors in powers of the relative error committed in the approximation of the main frequency of the problem. In Section 4 we
study the construction of explicit two-step hybrid methods based on the optimization process stated in Section 3, and some particular
methods with algebraic orders four and six are derived. The stability and phase properties of these newmethods are analyzed. In Section 5
we carry out some numerical experiments to show the performance of the new optimized methods when they are compared with other
methods proposed in the scientific literature for solving orbital problems and related oscillatory IVPs. Finally, Section 6 is devoted to
present some conclusions.

2. Explicit two-step hybrid methods

In this section we present the explicit two-step hybrid methods which are the aim of our study and the notation to be used in the rest
of the paper. We consider s-stage explicit two-step methods defined by the scheme [31]

Y1 = yn−1, Y2 = yn,

Yi = (1 + ci)yn − ci yn−1 + h2
i−1
j=1

aij f (tn + cj h, Yj), i = 3, . . . , s,

yn+1 = 2yn − yn−1 + h2
s

i=1

bi f (tn + ci h, Yi),

(2)

which can be represented by the table of coefficients

c A
bT =

−1 0 0 0 · · · 0
0 0 0 0 · · · 0
c3 a31 a32 0 · · · 0
...

...
...

...
. . .

...
cs as1 as2 · · · as,s−1 0

b1 b2 · · · bs−1 bs

(3)

A special feature of this class of explicit two-stepmethods is that, after the starting procedure, they only require s−1 function evaluations
in each step, and therefore they can be considered as explicit two-step hybrid methods with s − 1 stages per step.

We note that the derivation of classical two-step hybrid methods (3) with constant coefficients (up to order six) was analyzed in [31].
In this paper we analyze the derivation of fitted two-step hybrid methods (3) with variable coefficients which are optimized for solving
oscillatory problems (see Section 4).

2.1. Classical methods

In the case of classical methods in which the coefficients ci, bi and aij are constants, the order conditions for two-step hybrid methods
have been derived by Coleman [32], and these conditions up to order p are given by

bT9′′(ti) = 1 + (−1)ρ(ti), ti ∈ T2, ρ(ti) = 2, . . . , p + 1, (4)

where the parameters ti, ρ(ti), 9′′(ti) and T2 are defined in [32].
The analysis of stability and phase properties for classical two-step methods is carried out by using the linear test model

y′′(t) = −λ2y(t), λ > 0. (5)

When an explicit two-step hybrid method (2) is applied to solve the linear test model (5), the following recursion is obtained

yn+1 − S(H)yn + P(H)yn−1 = 0, H = λh, (6)

where the coefficients S(H) and P(H) are given by

S(H) = 2 − bT (e + c)H2
+ bT A(e + c)H4

− · · · + (−1)s−1 bT As−2(e + c)H2s−2, (7)

P(H) = 1 − (bT c)H2
+ (bT A c)H4

− · · · + (−1)s−1(bT As−2 c)H2s−2, (8)

and the vector e = (1, . . . , 1)T ∈ Rs. The stability and phase properties of the methods are determined by the roots of the characteristic
polynomial of the recursion (6):

ξ 2
− S(H)ξ + P(H). (9)
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