
Computer Physics Communications 185 (2014) 2558–2565

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Performance and precision of histogram calculation on GPUs:
Cosmological analysis as a case study
Miguel Cárdenas-Montes a,∗, Juan José Rodríguez-Vázquez a, Miguel A. Vega-Rodríguez b,
Ignacio Sevilla-Noarbe a, Eusebio Sánchez Alvaro a

a CIEMAT, Department of Fundamental Research, Avda. Complutense 40, 28040, Madrid, Spain
b University of Extremadura, ARCO Research Group, Department Technologies of Computers and Communications, Escuela Politécnica,
Campus Universitario s/n, 10003, Cáceres, Spain

a r t i c l e i n f o

Article history:
Received 20 January 2014
Received in revised form
30 May 2014
Accepted 4 June 2014
Available online 11 June 2014

Keywords:
GPU computing
Histogram calculation
Cosmology
Correlation function

a b s t r a c t

Histogram calculation is an essential part of many scientific analyses. In Cosmology, histograms are
employed intensively in the computation of correlation functions of galaxies, as part of Large Scale
Structure studies. Among the most commonly used ones are the two-point, three-point and the
shear–shear correlation functions. In these computations, the precision of the calculation of the counts
in each bin is a key element for achieving the highest accuracy. In order to accelerate the analysis of
increasingly larger datasets, GPU computing is becoming widely employed in this field. However, the
recommended histogram calculation procedure becomes less precisewhen bins becomehighly populated
in these sort of algorithms. In thiswork, an alternative implementation to correct this problem is proposed
and tested. This approach is based on distributing the creation of histograms between the CPU and GPU.
The implementation is tested using three cosmological analyseswith observational data. The results show
an increased performance in terms of accuracy while keeping the same execution time.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The calculation of correlation functions is a computing-inten-
sive activity which uses histograms as an intrinsic part of the al-
gorithm in many implementations. They are frequently employed
as part of Large Scale Structure studies in cosmological analyses.
Due to the increment in the volume of scientific data available, cos-
mologists have researched diverse alternatives to accelerate these
computations. Currently, GPU computing has the capability to pro-
cess large datasets within a reasonable execution time and many
publications have tackled the analysis of experimental data em-
ploying them. However, for large datasets, histogram construction
presents some precision weaknesses associated with number rep-
resentation.

In this work, these weaknesses are shown in relation to the
study of correlation functions in Cosmology: the two-point angular
correlation function (2PACF), the three-point angular correlation
function (3PACF) and the shear–shear correlation function. How-
ever, it is expected that these imprecisions are independent of the

∗ Corresponding author. Tel.: +34 91 346 6281; fax: +34 91 346 6068.
E-mail address:miguel.cardenas@ciemat.es (M. Cárdenas-Montes).

problem, and only related with factors such as the dataset size, the
histogram parameters and the number representation.

In order to overcome them, an alternative implementation for
histogram construction is presented and evaluated using obser-
vational data. This approach divides the histogram construction
task in two phases. Firstly, the counts are accumulated in sub-
histograms which reside on the shared memory of GPU and are
collated in global memory. Later, these sub-histograms are added
up on the host (CPU) memory (hereafter termed host memory), to
profit from the double precision representation. The proposed im-
plementation is as fast and is more accurate than with previous
schemes. The tests performed and reported in the current work
demonstrate that this new approach is able to deal with up to 1012

counts per bin. To the authors’ knowledge, nomodifications in this
line have been proposed to overcome the weaknesses of the num-
ber representation in histogram construction.

This paper is organized as follows: Section 2 summarizes
related work and previous efforts done in this area. In Section 3.1 a
brief description of the weaknesses of number-representation is
presented. The relevant algorithms for cosmology analysis used
in this work are briefly described in Section 3.2. The CFHTLenS
dataset, which is used later, is presented in Section 3.3. The
comparison of the new implementation presented here versus the

http://dx.doi.org/10.1016/j.cpc.2014.06.002
0010-4655/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2014.06.002
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.06.002&domain=pdf
mailto:miguel.cardenas@ciemat.es
http://dx.doi.org/10.1016/j.cpc.2014.06.002


M. Cárdenas-Montes et al. / Computer Physics Communications 185 (2014) 2558–2565 2559

classic approach is presented and analysed with both artificial
(Section 4) and real data (Section 5). Finally, Section 6 contains the
conclusions of this work.

2. Related work

A standard and essential reference for histogram construction
on GPUs is the white paper from NVIDIA [1]. Although originally
devoted to image processing and data mining, it has served as a
guide for many other scientific areas. In this paper, 64-bin and
256-bin histogram implementations are proposed and evaluated.
Nowadays, the hardware has evolved enough to allow for larger
histogram sizes. The proposed implementation of [1] is the ‘classic’
one using per-block1 sub-histograms in shared memory. In this
approach, they are later gathered on global memory to form the
final histogram. Two more variants are proposed: per-thread and
per-warp2 sub-histograms. Depending on the architecture of the
GPU, the histogram size and the data size, these strategiesmight be
a limiting factor in the performance and in the capability to contain
the counts in the bins (bin-count accuracy).3

In [2], the authors propose two new efficient methods for his-
togram calculation on GPUs. This article uses the NVIDIA white
paper as a starting point to propose their improvements. How-
ever, from the two implementations for histogram construction
presented in [1], the authors only cite the smallest one in capabil-
ity. In any case, this paper was written when compute capability
was 1.0,4 and no atomic operations on shared memory were avail-
able. Therefore, it can be considered as an obsolete strategy.

In [3], another efficient implementation to compute image
histograms on GPUs is proposed. Among other considerations, the
authors make considerations on the precision and the bin-count
accuracy. In this paper, an implementation which is unable to
accumulate more than 256 counts per bin is compared with a
new proposal. In order to mitigate the lack of bin-count accuracy,
local histograms are created. However, this new implementation
introduces errors when accumulating more than 2048 counts per
bin. This is clearly insufficient for cosmological analysis such as:
2PACF, 3PACF and shear–shear correlation, as it will be shown
later. Neither of these implementations showcase the use of atomic
functions or shared memory to enhance the performance.

In the book [4] a very efficient implementation of per-block
sub-histograms on shared memory is described. This implemen-
tation presents a few advantages: it is easy to implement, it is
widely applicable to many different disciplines and it has a great
performance and bin-count accuracy. This implementation seems
inspired by the per-block implementation of [1], but incorporates
atomic functions and uses sharedmemory for storing the interme-
diate sub-histograms therefore improving the performance. This
implementation has been used by the authors in previous works,
such as the analysis of the 2PACF [5,6] and the shear–shear analy-
sis [7]. At the same time, it is employed for comparison purposes
in the current work.

In [8] a per-block sub-histogram implementation is proposed.
The novelty of this approach relies on themultiple sub-histograms
which are embodied in a single thread block. This approach is an
extension of the one sub-histogram per thread block approach [9]

1 A block of threads, thread block or simply block is a logical group of threads
which are executed on a streaming multiprocessor.
2 Awarp is a group of 32 threads. The instructions are issued per warp. This is the

minimum unit of scheduling in the streaming multiprocessor.
3 The ability to correctly gather the number of counts assigned to a bin is termed

bin-count accuracy.
4 The compute capability categorizes the features of the compute device. A higher

number indicates more advanced features and a newer generation of the device.

which includes multiple sub-histograms per thread block. As a
final result, the implementation is a hybrid between per-warp
and per-block sub-histogram implementations. Given that this
implementation gathers the sub-histograms in the final histogram
on device memory, it will face difficulties with the largest number
attainable for some number-representations. On the other hand, it
will show some imprecisionwhen adding small and large numbers
in float-representation.

The comparison between the methods proposed by Shams
et al. [2] and by Nugteren et al. [9] shows that the different applica-
tion areas (data mining and image processing) establish different
requirements about the histogram size, larger for datamining than
for image processing. The input sizes are also different: 8-bits are
enough for image processing, whereas, 32-bits are typical in data
mining. This restricts the performance study towards different ob-
jectives than in Cosmology, and therefore, it forces to implement
modifications.

In [9] two histogram implementations are proposed: a per-
warp sub-histogram and a per-thread sub-histogram. When pro-
cessing images, a successful and simple proposition to improve the
performance is to shuffle the input data. This is useful for images,
however, it has no impact on the analysis of galaxy catalogues used
in cosmology. For images, it is probable that close pixels will feed
the same bin therefore generating collisions (sequential updates of
the number of counts in the same bin) which will degrade the per-
formance. For cosmological inputs, this a priori knowledge of the
data structure does not exist, except for the case that the data has
been previously ordered.

Neither of the mentioned approaches proposes simultaneously
modifying both: the kernel and the CPU-part of the code, nor
profit from double-representation accessible only on the CPU-part.
Furthermore, in all of the previous implementations, after con-
structing the sub-histograms they are accumulated into the final
histogram on the GPU (device memory). In the implementation
proposed here, the final gathering is performed on host memory
(RAM) which benefits from the double-representation to improve
the bin-count accuracy. In addition, no considerations about the
input size and how it impacts the precision of the final result are
presented in the works mentioned in this section.

In contrast to image processing, cosmological analysis requires
trigonometric calculations before feeding the appropriate bin in
the histogram. For this reason, performance comparison between
the mentioned works and the current work for cosmological
problems is not feasible.

Regarding the precision of floating point representation onGPU,
a review of this issue is presented at [10]. In this work the inex-
actnesses associated with the use of float representation (opera-
tion accuracy and rounding), and how the programming affects the
final result is underlined. Furthermore, in [11] a complete descrip-
tion of the floating point format and its weaknesses are fully de-
scribed. In [12] the latest version of the floating-point standard can
be found.

Concerning other cosmological studies, in [13] the authors
present an alternative approach to calculate the 2PACF. In the de-
scription of the implementation, the use of integer-representation
for the histogram (256 bins and logarithmic binning), as well as
the use of atomicAdd() function and shared memory for support-
ing the sub-histograms are highlighted. Although they express that
the final aim is to be able to process up to billions of galaxies with
this code, the largest dataset processed is composed of one million
galaxies. From the description of the implementation, similar diffi-
culties for the bin-count accuracy as the float-based implementa-
tion will arise when increasing the size of the dataset. The lack of
precision in this implementation is mitigated because the data are
processed in bunches, and then accumulated.

Another implementation of the 2PACF is presented in [14].
This approach uses an array in double-representation to hold



Download English Version:

https://daneshyari.com/en/article/501882

Download Persian Version:

https://daneshyari.com/article/501882

Daneshyari.com

https://daneshyari.com/en/article/501882
https://daneshyari.com/article/501882
https://daneshyari.com

