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a b s t r a c t 

A zero free length (ZFL) spring is a spring with special properties, which is commonly used 

in static balancing. Existing methods to create ZFL springs all have their specific drawbacks, 

which rises to the need of a new method to create such a spring. A method is proposed to 

design planar ZFL springs with specified stiffness (250–750 N/m) within a certain range (up 

to 20 mm of displacement). Geometric non-linearities of a curved leaf spring are exploited 

by changing its shape. The shape is determined by a non-linear least squares algorithm, 

minimizing the force residuals from a non-linear numerical analysis. Constraints are in- 

troduced to help in preventing the spring from intersecting itself during deformation. For 

three types of springs with different boundary conditions, designs are found with charac- 

teristic shapes and maximum force errors less than 1%. A trend is observed between spring 

size, maximum stress and desired stiffness. New type of ZFL springs can now be designed, 

which can not only be used in existing applications, but also enables the use of ZFL springs 

in micro mechanisms. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The spring is one of the most commonly used physical elements in engineering. A special sub-category in springs is the 

zero free length spring (ZFL spring), also null-length spring or ideal spring, which is - as the name implies - a spring with 

zero physical length when no forces are applied. This property results in a spring element which enables a range of special 

mechanisms to be realized, predominantly in the field of static balancing. To mention a few: Slow wave seismometer [1,2] , 

Anglepoise suspension [3] which are basically balanced arms with a mass [4] , zero stiffness mechanisms [5,6] , mobile arm 

support for humans [7,8] , camera stabilizer apparatus [9] and in (robotic) manipulators [10,11] . In all these applications any 

unwanted potential energy differences (resulting from gravity or elastic deformations) are counteracted by one or more ZFL 

springs, delivering the necessary forces to neutralize the undesired loads. 

Before explaining the emerging implementation difficulties of a ZFL spring, it is important to note the properties which 

define the unique behavior of a ZFL spring. A ZFL spring gets its unique properties from the sole fact that the unstretched 

(free) length of a linear spring is zero. Observing Fig. 1 , a ZFL spring is shown on the left. The length being zero results in 

the spring pivot and endpoint being coincident. The spring force is now directly proportional to the displacement vector, i.e. 

the force is in the same direction and its magnitude is proportional to the extension length of the spring ( F = ku ). This in 

contrast to a normal (non-zero free length linear) spring, where the force is not only dependent on the displacement, but 

also on the initial position L 0 of the spring ( F = k ( L 0 + u ) ). This is shown on the right in Fig. 1 . In one dimension there is 
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List of variables (in order of appearance) 

F Reaction/spring force 

k Spring stiffness 

u Displacement 

L 0 Initial length of spring 

x i Control points 

N Number of segments 

l i Segment length 

αi Segment relative angle 

q Design vector 

w Beam width 

h Beam height 

F e External force vector 

K Stiffness matrix 

K t Tangent stiffness matrix 

F i Internal force vector 

F x , F y Reaction force component in x and y -direction 

F A Axial (reaction) force component (aligned with displacement direction) 

F T Transverse (reaction) force component (force perpendicular to displacement direction) 

M Reaction moment 

n u Number of displacement steps in one track 

n θ Number of tracks in different directions 

u min Minimum displacement (displacement at first sample point) 

u max Maximum displacement range of the spring 
˜ F Desired force 

r Force residual 

f obj Objective function 

αmax Maximum relative segment angle 

l min Minimum segment length 

l max Maximum segment length 

r 0 Direction vector from the light source node to the shadow segment 

r s Orientation vector of the shadow segment 

R 90 90 ° angle rotation matrix 

d 0 Normal vector of the shadow segment 

ˆ n 0 Corrected normal vector of the shadow segment 

r 1 , r 2 Direction vectors from the light source node to the corners of the shadow segment 

d 1 , d 2 Normal vectors of the corners 

n 1 , n 2 Corrected normal vectors of the corners 

μ Direction parameter 

R ( θ ) Rotation matrix of angle θ
θ e Extra outwards rotation of normal vectors 

ˆ n 1 , ˆ n 2 Normal vectors of the shadow segment corners 

f 0 , f 1 , f 2 Distances to the border of the shadow 

g I Constraint equation for the shadow-method constraint to prevent self-intersection 

N c Number of shadow constraint equations 

g II Constraint equation for contact during displacement 

r g Penalty function for constraint equations 

c I , c II Constraint constants for penalty functions 

f obj, c Constrained objective function 

J Jacobian matrix 

p Refined control points 

ɛ A Maximum relative error of forces in axial direction 

ɛ T Maximum relative error of forces in transverse direction 

ɛ shape Error on the shape of the spring 

no difference between the two springs, as the reference (zero) point can be chosen freely. But in two or three dimensions 

the zero point will always be the pivot point on which the spring is fixed. 
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