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a b s t r a c t

In the present work we describe a numerical algorithm which gives a measure of the disorder in particle
distributions in two and three dimensions. This applies to particle methods in general, disregarding the
fact they use topological connections between particles or not. The proposedmeasure of particle disorder
is tested on specific configurations obtained through the perturbation of a regular lattice. It turns out that
the disorder measuremay be qualitatively related to themean absolute value of the perturbation. Finally,
some applications of the proposed algorithm are shown by using the Smoothed Particle Hydrodynamics
(SPH) method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years a large amount of studies on particle methods
has been developed, concerning several fields of Physics, Engineer-
ing and Mathematics. The increasing interest in particle methods
has been driven by their powerful applications and by the attrac-
tive mathematical background on which they rely. The main ad-
vantage of particle schemes is that they do not implement fixed
computational grids but use particles as computational nodes and
move them in a Lagrangian fashion. This allows the modeling of
complex dynamics with large deformations of the computational
domain.

Generally, these schemes may be divided in two wide classes:
thosewhich use topological connections betweenparticles (i.e. [1])
and meshless methods (like, for example, [2,3]). For all these
schemes, the attainment andmaintenance of a regular particle dis-
tribution is a crucial point, since the particle disorder may strongly
affect their accuracy and stability [4,5]. This challenged many
researchers to regularize the particle arrangement through
remeshing or shifting algorithms (see, for example, [6–8]). Not-
withstanding the idea of particle order/disorder is a natural and
innate concept, its theoretical definition andquantitativemeasure-
ment is hard to identify in a clear and unambiguous manner. This
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is what we try to address in the present work: we propose a mea-
sure of the particle disorder and check it on a number of test cases.
These have been gathered in two groups: the former one is made
by applications of the disordermeasure on different particle distri-
butionswhile the latter one contains dynamical test cases obtained
by using a Smoothed Particle Hydrodynamics (SPH) scheme.

The basic idea for the particle disorder measure relies on the
definition of two different local distances (that is, distances related
to each single particle). The first local distance is simply the
minimum distance of a particle from its neighbor particles. The
definition of the second local distance is more complex, since
this must account for any directional anisotropy in the particle
distribution. This is computed by searching the nearest neighbor
particles in different directions and, then, taking the maximum
distance all over them.

By construction, the second distance is greater or equal to the
first distance. Hence, we define a local disorder measure as the
ratio between half the difference between the second and the first
distance and their arithmetic mean. A global disorder measure is
obtained as the arithmetic mean of the local measure all over
the particles. If the distribution is regular, the first and second
distances coincide all over the computational domain, the local
measure is zero everywhere and so does the global measure (see
Section 2). Then, intuitively, the global measure represents how
far the actual particle distribution is from a regular lattice. In
Section 2.1 we heuristically found that it has the same order of
magnitude of the mean absolute error of the particle distribution
with respect to a hypothetical regular distribution. Finally, in
Section 3 the global measure has been applied to study dynamical
test cases.
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Fig. 1. Sketch of a generic set of the neighbor particles,Ni (green shaded area), and
of the cone Ci(v̂)with angle 2 θ and axis direction v̂ (red shaded area). The selected
particle is the nearest to the ith particle inside the cone. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

2. The particle disorder measure

Let us consider a particle i at the position ri. In particle
methods, the ith particle has its own neighbor particles which
may be identified through topological connections (e.g. PFEM) or
as particles inside a proper domain (as, for example, the compact
support of the kernel function in SPH). We denote the set of the
neighbor particles to the particle i as Ni (note that Ni does not
include the ith particle itself). We define the first local distance as
follows:

d (i)
m = min

j∈Ni
∥rj − ri∥, (1)

where rj is the position of the jth neighbor particle. If Ni is empty,
d (i)
m is set equal to zero. This is an arbitrary choice and it means

that we consider isolated/not-connected particles as a part of
disconnected computational domains.

To construct the second local measure, we first define the right
circular cone. The vertex of the cone is placed on the ith particle
and its axis is identified by a unit vector v̂. The cone aperture is
denoted by 2θ . Then, the cone is given by:

Ci(v̂) =


r ∈ Rd such that

(r − ri)
∥r − ri∥

· v̂ ≥ cos(θ)


, (2)

where d indicates the spatial dimension. A sketch of the cone is
displayed in Fig. 1. The definition of the angle θ is of crucial impor-
tance. Specifically, we require that, in the presence of a regular lat-
tice, the cone includes at least one of the nearest neighbor particles
(see Fig. 2). In two dimensions only three regular distributions are
possible, namely, the Triangular, the Cartesian and the Hexagonal
one. Among these, the Hexagonal distribution has the largest angle
between two subsequent nearest particles, i.e. 2π/3 radiants. This

suggests that θ has to be larger than π/3. In three dimensions, the
only regular lattice is the Cartesian grid. In this case, we require the
cone to be large enough to include an octant. This corresponds to
cos(θ) > 1/

√
3 which, similar to the two dimensional case, ap-

proximately corresponds to choosing θ ≥ π/3. The influence of θ
on the results is analyzed in Section 2.1. In all the cases, the axis
direction v̂ is arbitrary.

After the conehas beendefined,we select the neighbor particles
inside it and compute the minimum distance from the ith particle.
Then, the cone is rotated (this corresponds to a rotation of the axis
or, equivalently, of the vector v̂) and the procedure is repeated.
In numerical simulations it is not possible to rotate the cone
continuously. For this reason, we select a finite number of rotations
to obtain a cover of the neighborhood of the particle i. This strategy
influences the value of the measure we are going to define but it
does not alter its global properties. This aspectwill be examined in-
depth in Section 2.1. For the time being, let us assume that there are
k rotations of the cone or, equivalently, k coneswith axes identified
by unit vectors v̂k. When the neighborhood of the ith particle has
been covered, the second distance is set equal to the supremum of
the minimum distances, that is:

d (i)
M = max

k


min

j∈Ni|rj∈Ci(v̂k)
∥rj − ri∥


. (3)

A sketch of the procedure is drawn in Fig. 3. By construction, this
definition allows detecting any eventual anisotropy in the particle
distribution and, in the case of a regular lattice, it coincides with
d (i)
m . If any of the k cones is empty (that is, no neighbor particles are

inside it), the minimum distance inside it is set equal to zero. This
is done to be consistent with the case in which the particle i has
no neighbor particle at all. In this way, the above definitions imply
d (i)
M = d (i)

m = 0.
By construction, the second distance is greater or equal to the

first distance. Hence, we define a local disordermeasure as follows:

λi =


d (i)
M − d (i)

m

d (i)
M + d (i)

m
if d (i)

M > 0,

0 if d (i)
M = 0.

(4)

The latter case corresponds to isolated particles. Obviously, we
exclude from thepresent analysis the eventuality that all (or a great
part of) the particles are isolated. Finally, the global measure of the
particle disorder is defined as follows:

Λ =


i

λi

N
, (5)

where the summation is performed over all particles and N is the
total number of particles. Since λi ≤ 1, it is Λ ≤ 1 as well. If the
particle distribution is regular, the second and first local distances

Fig. 2. A sketch with the Cartesian tessellation. Left: a cone with large enough value of θ . Right: a cone with a wrong value of θ .
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