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ABSTRACT

The efficient operation and in-core fuel management of PWRs are of utmost importance. In the present
work, a core reload optimization using Shuffled Frog Leaping (SFL) algorithm is addressed and mapped on
nuclear fuel loading pattern optimization. SFL is one of the latest meta-heuristic optimization algorithms
which is used for solving the discrete optimization problems and inspired from social behavior of frogs.
The algorithm initiates the search from an initial population and carries forward to draw out an optimum
result. This algorithm employs the use of memetic evolution by exchanging ideas between the members of
the population in each local search. The local search of SFL is similar to particle swarm optimization (PSO)
and applying shuffling process accomplishes the information exchange between several local searches to
obtain an overall optimum result. To evaluate the proposed technique, Shekel’s Foxholes and a VVER-
1000 reactor are used as test cases to illustrate performance of SFL. Among numerous neutronic and
thermal-hydraulic objectives necessary for a fuel management problem to reach an overall optimum, this
paper deals with two neutronic objectives, i.e., maximizing effective multiplication factor and flattening
power distribution in the core, to evaluate the capability of applying SFL algorithm for a fuel management
problem. The results, convergence rate and reliability of the method are quite promising and show the
potential and efficiency of the technique for other optimization applications in the nuclear engineering

field.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the last three decades the problem of loading pattern op-
timization of nuclear reactor cores has been of great concerns and
various methods considering the nonlinear and multi-dimensional
nature of this problem have been developed. Optimizing nuclear
reactor core configuration involves wide range of objectives con-
cerning economics, safety and reactor physics aspects, i.e. max-
imizing fuel burn-up, maximizing effective multiplication factor
(kefr), flattening power distribution in the core and many other
objectives including thermal-hydraulic constraints. Till now sev-
eral methods like PSO [1], genetic algorithm (GA) [2,3], simulated
annealing (SA) [4], Artificial Bee Colony (ABC) [5] and perturba-
tion theory [6] have been developed for nuclear core loading pat-
tern optimization. However, due to the restriction of each of these
methods none of them can guarantee reaching to an overall opti-
mum and they can only find near optimum solution [7].
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Evolutionary algorithms like SFL are stochastic search methods
that mimic natural biological evolution and/or the social behavior
of species. Such algorithms have been developed to arrive at
near-optimum solutions to complex and large-scale optimization
problems which cannot be solved by gradient-based mathematical
programming techniques. The shuffled frog-leaping algorithm
draws its formulation from two other search techniques: the local
search of the ‘particle swarm optimization’ technique; and the
competitiveness mixing of information of the ‘shuffled complex
evolution’ technique [8].

SFL algorithm progresses by transforming frogs (solutions) in a
memetic evolution [9]. In this algorithm, individual frogs are not so
important; rather they are seen as hosts for memes and described
as memetic vectors [10]. In the SFL, the population consists of a set
of frogs (solutions) that is partitioned into subsets referred to as
memeplexes. The different memeplexes are considered as different
cultures of frogs, each performing a local search. Within each
memeplex, the individual frogs hold ideas, that can be influenced
by the ideas of other frogs, and evolve through a process of
memetic evolution. After a defined number of memetic evolution
steps, ideas are passed among memeplexes in a shuffling process.
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The local search and the shuffling processes continue until defined
convergence criterion is satisfied [8].

Based on our knowledge, SFL has not been used in nuclear
fuel management problems. However, it is successfully applied
in some other engineering applications. For instance, Rahimi-
Vahed and Hossein Mirzaei [9] applied SFL for a mixed-model
assembly line (MMAL) sequencing problem and Pakravesh and
Shojaei [11] optimized the size of continuous stirred tank reactor
(CSTR) for vinyl acetate polymerization using this algorithm.
Elbeltagi, Hegazy and Grierson [8] modified SFL for using in project
management. It was even used in optimizing traffic signal control
settings by Virginia Transportation Research Council.

In this study, cross sections and group constant of fuel assem-
blies, FA, are generated through using WIMSD4 code [12]. There-
after, CITATION code [13] is used to calculate the power peaking
factor (PPF) of each assembly and multiplication factor (key) of
the core. SFL is then applied to find an optimum loading pattern
in which the following two objectives are considered simultane-
ously: 1. maximizing effective multiplication factor, 2. flattening
power distribution in the core.

2. Reactor core description

Fig. 1 depicts 1/6 symmetry of the Bushehr Nuclear Power
Plant, BNPP, which is a VVER-1000. The illustrated core loading
pattern was proposed by the designer in the reactor FSAR [14].
The core contains 6 types of fuel assemblies which are shown
by different colors in Fig. 1. Every color represents a specific en-
richment. Each assembly contains 311 fuel rods while the burn-
able absorber rods are only included in 24B20, 24B36 and 36B36
assemblies.

3. Methodology

3.1. SFL

The initial population is a set of random numbers each repre-
senting a frog. The population is divided into smaller groups which
are called memeplexes [10]. The local searches which are actually
the memetic evolution, take place within the memeplexes [9]. In
this study, each frog represents a loading pattern and therefore,
there is a multiplication factor and 28 power peaking factors which
join together by a function called objective function to evaluate
the goodness of each configuration to achieve desired objectives.
The initial population must be organized in the descending order
of the values of the objective function. Thereafter, the partitioning
process must be implemented to partition the whole number of
frogs (N) into M memeplexes in a way that frogs with number 1 to
M are put as the first member of M memeplexes then frogs with
number M+1 to 2M are put as the second member of M meme-
plexes and so forth. Therefore, frogs are sorted from the maxi-
mum value of the objective function to the minimum one in each
memeplex.

In order to improve the frogs’ positions (or in other words the
values of the objective function), the local search is performed in
each memeplex by the following equation:

A =rand () x [8" — §"M] (1)
5new — 8current + A (2)
in which, 8™ is the best frog position in a memeplex, §"M is the

worst frog position in that memeplex, and rand() is a random
number between 0 and 1. The current position of the worst frog
(8eurrenty js improved by A to reach a new position (§"V). If §™V is
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Fig. 1. 1/6 symmetry of the BNPP core.
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better than "M, then ™ must be replaced by §"" and therefore,
the position of the worst frog in the memeplex is improved by the
idea of the best frog in it. Otherwise, the following equation must
be applied to improve §"M:

A =rand() x [8% — §"™], (3)
in which, 85¢ is the best frog position in the whole population,
8"M is the worst frog position in a memeplex, rand() is a random
number between 0 and 1. If the resultant new position is better
than "M, then "M must be replaced by the new position and as a
result, the position of the worst frog in the memeplex is improved
by the idea of the best frog in the whole population. Otherwise, the
worst frog must be replaced by a new random one. This process
is repeated by the amount of predefined value of local search
(L) for each memeplex. After repeating the aforementioned steps
until the convergence criteria is met, the best frog position in the
whole population is denoted as the final result of the optimization
process.

3.1.1. Validity test

An optimization process has prematurely converged to a local
optimum if it is no longer able to explore other parts of the search
space than the area currently being examined and there exists
another region that contains a better solution [15].

The quality of a newly proposed optimization procedure to
find the global optimum is frequently evaluated by using common
standard test functions in the literature for benchmark. One of
these test functions is Shekel’s Foxholes, which was introduced by
Shekel in 1971 and adapted for maximization by De Jong [16]. As
illustrated in Fig. 2, it is a two-dimensional function with 25 peaks
all with different heights, ranging from 476.191 to 499.002. The
global optimum is located at (—32, —32) [17]. Shekel’s Foxholes is
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