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a  b  s  t  r  a  c  t

In this  paper,  output  feedback  integral  control  of  piezoelectric  actuators  is considered  with  respect  to
the  hysteresis  effect.  The  linear  dynamics  of the  piezoelectric  actuator  is  modeled  as  a  linear  state space
system  with  an  input  nonlinearity  that  considers  the  hysteresis  effect.  A  proof  of the  Lyapunov  stability
of  the  system  with  integral  control is presented,  and  a method  for  deriving  the  upper  bound  for  the
regulating  gain  is shown.  A simple  example  is  used  to  illustrate  the  approach,  and  then  the  approach  is
applied  for  tracking  a step  signal  with  an  experimental  single-axis  piezoelectric  actuator  to  verify  that
the  system  is stable.

© 2016  Elsevier  Inc.  All  rights  reserved.

1. Introduction

Many high-precision positioning mechanisms are now being
based on piezoelectric actuators, in particular of stack type, due to
their high resolution. This is due to the fact that the actuator can be
integrated into flexure mechanisms, making the positioner mono-
lithic in nature, and hence the stage does not experience either
stiction or friction effects. The limitation on the range of movement
for these actuators, which is on the order of micrometers, makes
them natural for applications in a variety of nano/micro-positioning
applications, of which atomic force microscopy is perhaps the most
well known.

The actuator itself is driven through the converse piezoelectric
effect, as an applied electric field generates mechanical strain in
the material. However, this effect also has two nonlinearities that
affect the positioning accuracy of the piezoelectric as an actuator.
The first nonlinearity is known as creep, which creates a slow drift
in the position of the actuator over longer time periods. This effect
is most likely due to some dipoles in the material that are not cur-
rently aligned with the electric field, slowly becoming aligned with
the applied electric field in time. There are several different types of
models for creep of differing complexity [1], such as the fractional
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order model [2], and the logarithmic model [3]. However, as this
effect is slower than the dynamics of the piezo, it is typically easy
to mitigate with integral control. As the mechanical bandwidth of
the actuators typically extends into the hundreds or thousands of
Hertz, they can generate fast motions, however this precision is
limited by the noise level in the closed loop system which includes
both the electronics and the feedback control system used to miti-
gate the creep, and the effect of the second nonlinearity, hysteresis.
This nonlinearity depends on the current and previous inputs to the
actuator and is typically assumed to be rate-independent, which
means that its behavior is independent of input frequency. Most
commonly, phenomenological models are employed to model the
hysteresis and the most common of these, among many types, are
the Preisach, Prandtl–Ishlinskii, Maxwell slip, and Bouc–Wen mod-
els [4,5].

Possibly the most common approach for the control of piezo-
electric stack actuators is to develop models of the hysteresis and
creep effect, and then invert them for feedforward control [6,7].
This approach typically requires the precise identification of the
full set of parameters that make up the model of choice. Of course,
feedforward methods have their well-known disadvantages that
they are not robust to disturbances or changes in the system. Feed-
back control on the other hand can be made robust to disturbances
or changes in the system, however, typically at the expense of
reducing the bandwidth of the system. A number of feedback con-
trollers have been proposed including sliding mode [8,9], model
reference adaptive control [10], a backstepping controller [11], and
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an integral plus vibration controllers [12]. Of course, feedforward
and feedback control can also be combined [13] where ZVD input
shapers were combined with PI control. Another method is where
the dynamics of the actuator were linearized using high-gain feed-
back control [14] and then an inverse model of the linear vibrational
dynamics was used to formulate a feedforward command. Another
related approach is to invert the hysteresis inside the loop and then
to design a feedback controller for the linearized dynamics, with a
feedforward controller in front of the loop to extend the system
bandwidth [15].

A problem in the analysis of feedback control for piezoelectric
actuators is how to account for the hysteresis effect in the stability
analysis of the system. Hence, piezoelectrics are typically assumed
only to be represented by linear models, such as a low-order trans-
fer function model that neglects consideration of the hysteresis.
The hysteresis [16] was considered by employing an approximate
inverse of it inside of the loop, and then the servo and stabiliz-
ing controller were designed to be robust to the uncertainties in
the loop resulting from incomplete cancelation. Compounding the
problem of considering hysteresis is the fact that these actuators
all typically require some type of integral control action in order
to achieve their desired position, as a constant voltage must be
maintained for this to occur, and to counteract the creep effect. The
problem with integral control is that the analysis is complicated
by the presence of a simple pole at the origin, and hence, repre-
sents the critical case for stability. A state feedback based method
of designing linear controllers that include an integrator state and
that consider hysteresis was presented for magnetic shape mem-
ory alloys [17,18]. An analysis similar to that of the circle criterion
[19] was developed in continuous time for an autonomous non-
linearity with a possibly time-varying integral gain, for a class of
nonlinearities, which built off of the analysis of the discrete time
case [20]. The objective of this paper is to simplify the analysis, to
show that the hysteresis operator belongs to the class of nonlin-
earities considered, and then to apply the analysis to derive the
maximal integral gain for output feedback integral control of an
experimental piezoelectric actuator. The simplification serves to
make the proof more useable in practice for the design of linear
time invariant controllers with an integral term as it can explicitly
consider the limitations imposed inside the control system loop by
the hysteresis.

This paper is organized as follows. In Section 2, the dynamic
model of a piezoelectric actuator is built considering the input non-
linearity. Section 3 presents the controller design and its stability
proof. Experimental studies are included in Section 4 and Section 5
concludes this paper.

2. Dynamic modeling

The dynamic model of a piezoelectric actuator can be described
by a linear transfer function under small signal conditions. For
larger signals, a phenomenological model based on the modi-
fied Prandtl–Ishlinskii model of hysteresis can be used. Here, the
piezoelectric actuators dynamic model can be represented as a
combination of these two systems, as a single-input–single-output
linear state space system, with the hysteresis considered as a non-
linearity on the input. This can be written as

ẋ = Ax + B�(u) (1)

y = Cx + D�(u) (2)

where x ∈ R
n, A ∈ R

n×n, B ∈ R
n×1, C ∈ R

1×n, D ∈ R, and u, y ∈
R, � : R  → R. With G(s) = C(sI − A)−1B + D, this can be represented
graphically as in Fig. 1.

The input nonlinearity of the piezoelectric actuator can be
represented by the Prandtl–Ishlinskii phenomenological model of

Fig. 1. Plant block diagram.

hysteresis. The basic block of the Prandtl–Ishlinskii operator can be
given as

 a(u, w)  = max{u(t) − a, min{u(t) + a, w}}  (3)

where u(t) is the control input, and a is the control input threshold
value (the magnitude of backlash). The hysteresis operator can be
defined recursively as [21]

�a[u](t) =
{
 a(u(0), �)

 a(u(t), �a[u](ti)) for ti < t ≤ ti+1

(4)

where 0 = t0 < t1 < . . . < tN−1 is a partition of R+ such that the func-
tion u is monotone on each of the subintervals [ti, ti+1], and � is the
initial consistency condition which represents the internal state of
the piezoelectric actuator before u(0) is applied at t = 0. It is usually,
but not necessarily, initialized to zero, representing that the actu-
ator starts from a deenergized state. Here the hysteresis operator
is defined as �a[u], where it can possess an initial state. It is more
commonly written as in [21], with a non-zero initial condition as
�a[u, �] to denote its dependence on its initial state.

The generalized operator is given by the weighted summation
of a finite number of hysteresis operators as

 (u(t)) = wTh�[u](t) (5)

where wT
h

= [wh0
wh1

. . . whm ] denotes the slope
(or gain) of each individual backlash operator and � =
[�a0 �a1 . . . �am ]T is the vector containing the individ-
ual backlash operators. Each of the backlash operators will have
a threshold width of 2a beyond the initial loading curve with
0 = a0 < a1 < . . . < am. As a0 = 0 it can be seen that the first operator
will always be used as it describes the general linear response of
the actuator weighted by a factor wh0

. The subsequent operators
are only used when the control inputs are greater than their
respective threshold values ai.

The standard Prandtl–Ishlinskii operator is symmetric about the
center point of its loop, but in experiment it can be observed that the
loop is in fact asymmetric. A saturation operator can be combined in
series with the hysteresis operator to yield this asymmetric behav-
ior [22]. The saturation operator can be taken as a weighted linear
superposition of linear-stop or one-sided dead zone operators. The
dead-zone operator is a nonconvex, asymmetrical, memory-free
nonlinear operator [22] that can be given by

�d[ ](t) =
{

max{ (t) − d, 0} if d > 0

 (t)  if d = 0
(6)

and the full response of the hysteresis becomes

�(u(t)) = wTs �[ ](t) = wTs �[wTh�[u]](t) (7)

where wTs = [ws0 ws1 . . . wsp ] is the weight vector, d =
[ d0 d1 . . . dp ] where 0 = d0 < an < d1 <. .. < dp is the saturation

threshold and � = [�d0
�d1

. . . �dp ]
T
. The threshold values

ai are usually chosen to be evenly spaced across the input range,
however, the threshold values di of the saturation operator need
not be equally spaced and can be difficult to obtain.

3. Integral control with input nonlinearities

The state space representation of a single-input–single-output
system with input nonlinearities is given in Eqs. (1) and (2)
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