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A B S T R A C T

Frequency response functions (FRFs) are important for assessing the behavior of stochastic linear dynamic
systems. For large systems, their evaluations are time-consuming even for a single simulation. In such cases,
uncertainty quantification by crude Monte-Carlo simulation is not feasible. In this paper, we propose the use of
sparse adaptive polynomial chaos expansions (PCE) as a surrogate of the full model. To overcome known
limitations of PCE when applied to FRF simulation, we propose a frequency transformation strategy that
maximizes the similarity between FRFs prior to the calculation of the PCE surrogate. This strategy results in
lower-order PCEs for each frequency. Principal component analysis is then employed to reduce the number of
random outputs. The proposed approach is applied to two case studies: a simple 2-DOF system and a 6-DOF
system with 16 random inputs. The accuracy assessment of the results indicates that the proposed approach can
predict single FRFs accurately. Besides, it is shown that the first two moments of the FRFs obtained by the PCE
converge to the reference results faster than with the Monte-Carlo (MC) methods.

1. Introduction

Interest towards working with large engineering systems is increasing
recently, but long simulation time is one of the main limiting factors.
Although the development of the computational power of modern compu-
ters has been very fast in recent years, increasing model complexity, more
precise description of model properties and more detailed representation of
the system geometry still result in considerable execution time and memory
usage. Model reduction [1,2], efficient simulation [3–5] and parallel
simulation methods [6,7] are different strategies to address this issue.

Consequently, uncertainty propagation in these systems cannot be
carried out by classical approaches such as crude Monte-Carlo (MC)
simulation. More advanced methods such as stochastic model reduction
[8] or surrogate modeling [9] are required to replace the computation-
ally expensive model with an approximation that can reproduce the
essential features faster. Of interest here are surrogate models. They can
be created intrusively or non-intrusively. In intrusive approaches, the
equations of the system are modified such that one explicit function
relates the stochastic properties of the system responses to the random
inputs. The perturbation method [10] is a classical tool used for this
purpose but it is only accurate when the random inputs have small
coefficients of variation (COV). An alternative method is intrusive
polynomial chaos expansion [11]. It was first introduced for Gaussian

input random variables [12] and then extended to the other types of
random variables leading to generalized polynomial chaos [13,14].

In non-intrusive approaches, already existing deterministic codes are
evaluated at several sample points selected over the parameter space. This
selection depends on the methods employed to build the surrogate model,
namely regression [15,16] or projection methods [17,18]. Kriging [19,20]
and non-intrusive PCE [21] or combination thereof [22,23] are examples of
the non-intrusive approaches. The major drawback of PCE methods, both
intrusive and non-intrusive, is the large number of unknown coefficients in
problems with large parameter spaces, which is referred to as the curse of
dimensionality [24]. Sparse [25] and adaptive sparse [26] polynomial chaos
expansions have been developed to dramatically reduce the computational
cost in this scenario.

To propagate and quantify the uncertainty in a Quantity of Interest
(QoI) of a system, its response should be monitored all over the
parameter space. This response could be calculated in time, frequency
or modal domain. For dynamic systems, the frequency response is
important because it provides information over a frequency range with
a clear physical interpretation. This is the main reason of the recent
focus on frequency response functions (FRF) for uncertainty quantifi-
cation of dynamic systems and their surrogates [19,27–30].

Several attempts have been made to find a surrogate model for the
FRF by using modal properties or random eigenvalue problems. Pichler
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et al. [31] proposed a mode-based meta-model for the frequency
response functions of stochastic structural systems. Yu et al. [32] used
Hermite polynomials to solve the random eigenvalue problem and then
employed modal assurance criteria (MAC) to detect the phenomenon of
modal intermixing. Manan and Cooper [33] used non-intrusive poly-
nomial expansions to find the modal properties of a system and predict
the bounds for stochastic FRFs. They implemented the method on
models with one or two parameters and COV ≤2%.

Very few and recent papers addressed the direct implementation of PCE
on the frequency responses of systems. Kundu and Adhikari [34] proposed
to obtain the frequency response of a stochastic system by projecting the
response on a reduced subspace of eigenvectors of a set of complex,
frequency-adaptive, rational stochastic weighting functions.

Pagnacco et al. [35] investigated the use of polynomial chaos expan-
sions for modeling multimodal dynamic systems using the intrusive
approach by studying a single degree of freedom (DOF) system. They
showed that the direct use of the polynomial chaos results in some spurious
peaks and proposed to use multi-element PCE to model the stochastic
frequency response but, to the knowledge of the authors, they did not
publish anything onmore complex systems yet. Jacquelin et al. [36] studied
a 2-DOF system to investigate the possibility of direct implementation of
PCE for the moments of the FRFs and they also reported the problem of
spurious peaks. They showed that the PCE converges slowly on the
resonance parts. They accelerate the convergence of the first two statistical
moments by using Aitken's method and its generalizations [37].

In general, there are two main difficulties to make the PCE
surrogate model directly for the FRFs: i( ) their non-smooth behavior
over the frequency axis due to abrupt changes of the amplitude that
occur close to the resonance frequencies. At such frequencies, the
amplitudes are driven by damping [38]. In [39], Adhikari and Pascal
investigated the effect of damping in the dynamic response of
stochastic systems and explain why making surrogate models in the
areas close to the resonance frequencies is very challenging. ii( ) the
frequency shift of the eigenfrequencies due to uncertainties in the
parameters. This results in very high-order PCEs even for the FRFs
obtained from cases with 1 or 2 DOFs. The main contribution of this
work is to propose a method that can solve both problems.

The proposed approach consists of two steps. First, the FRFs are
transformed via a stochastic frequency transformation such that their
associated eigenfrequencies are aligned in the transformed frequency
axis, called scaled frequency. Then, PCE is performed on the scaled
frequency axis.

The advantage of this procedure is the fact that after the transformation,
the behavior of the FRFs at each scaled frequency is smooth enough to be
surrogated with low-order PCEs. However, since PCE is made for each
scaled frequency, this approach results in a very large number of random
outputs. To solve this issue, an efficient version of principal component
analysis is employed. Moreover, the problem of the curse of dimensionality
is resolved here by means of adaptive sparse PCEs.

The outline of the paper is as follows. In Section 2, the required
equations for deriving the FRFs of a system are presented. In Section 3,
all appropriate mathematics for approximating a model by polynomial
chaos expansion are presented. The main challenges for building PCEs
for FRFs are elaborated and the proposed solutions are presented. In
Section 4, the method is applied to two case studies, a simple case and a
case with a relatively large number of input parameters.

2. Frequency response function (FRF)

Consider the spatially-discretized governing second-order equation
of motion of a structure as

Mq Vq Kq f t¨ + ˙ + = ( ) (1)

where for an n-DOF system with nu system inputs and ny system
outputs, q t( ) ∈ n is the displacement vector, f t( ) is the external load
vector which is governed by a Boolean transformation of stimuli vector
f P ut t( ) = ( )u ; with u t( ) ∈ nu. Real positive-definite symmetric matrices

M V K, , ∈ n n× are mass, damping and stiffness matrices, respectively.
The state-space realization of the equation of motion in Eq. (1) can be
written as

x Ax Bu y Cx Dut t t t t t˙( ) = ( ) + ( ), ( ) = ( ) + ( ) (2)

where A ∈ n n2 ×2 , B ∈ n n2 × u, C ∈ n n×2y , and D ∈ n n×y u.
x q qt t t( ) = [ ( ) , ˙ ( )] ∈T T T n2 is the state vector, and y t( ) ∈ ny is the system

output. A and B are related to mass, damping and stiffness as follows
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The output matrix C , which has application dependent elements,
linearly maps the states to the output y and D is the associated direct
throughput matrix. The frequency response of the model (2) can be
written as

C I A B Djω jω( ) = ( − ) + ,−1 (4)

where  ω= [ , , …, ] ∈ , ∀n n
n n

1 2 ×
T ( × )×1

u y
y u and j = −1 . (•)T

stands for the transpose of the matrix. It should be mentioned that
the eigenvalues of A are the poles of the system. They are complex and
their imaginary parts can be approximated as the frequencies, in rad/s,
at which the maximum amplitude occurs.

3. Methodology

This section first, briefly reviews polynomial chaos expansion for
real-valued responses. Then, the method of stochastic frequency
transformation is explained in conjunction with the proposed method
as well as its application to the complex-valued FRF responses.

3.1. Polynomial chaos expansions

Let be a computational model with M-dimensional random
inputs X= X X X{ , , …, }M1 2

T and a scalar output Y. Further, let us denote
the joint probability distribution function (PDF) of the random inputs
by xf ( )X defined in the probability space (Ω, , ).

Assume that the system response XY = ( ) is a second-order
random variable, i.e.  Y[ ] < + ∞2 and therefore it belongs to the
Hilbert space  = ( , )f

M2
X

of fX-square integrable functions of X
with respect to the inner product:

 ∫X X x x x xψ ϕ ψ ϕ f[ ( ) ( )] = ( ) ( ) ( )dX
X (5)

where X is the support of X . Further assume that the input variables
are independent, i.e. xf f x( ) = ∏ ( )X i

M
X i=1 i

. Then the generalized poly-
nomial chaos representation of Y reads [13]:



∑ XY u ψ= ( )∼
α

α α
∈ M (6)

in which u∼α is a set of unknown deterministic coefficients,
α α α α= ( , , …, )M1 2 is a multi-index set which indicates the polynomial
degree of Xψ ( )α in each of the M input variables. ψα s are multivariate
orthonormal polynomials with respect to the joint PDF xf ( )X , i.e. :
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where δαβ is the Kronecker delta. Since the input variables are assumed to
be independent, these multivariate polynomials can be constructed by a
tensorization of univariate orthonormal polynomials with respect to the
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